Skip to main content

Equations for Polymeric Materials

  • Living reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
  • 330 Accesses

Abstract

Systems coupling fluids and polymers are of great interest in many branches of sciences and engineering (applied physics, chemistry, biology, …). These systems attempt to describe the behavior of complex mixtures of particles and fluids, and as such, they present numerous challenges, simultaneously at three levels: at the level of their derivation, the level of their numerical simulation, and that of their mathematical treatment. This chapter is devoted to the mathematical treatment after a brief discussion of the derivation of such models. Recent results about existence and uniqueness of strong solutions as well as global existence of weak solutions will be discussed. At the mathematical level, one of the main difficulties comes from the coupling of the Navier-Stokes system with a transport equation for the density of polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A. Arnold, J.A. Carrillo, C. Manzini, Refined long-time asymptotics for some polymeric fluid flow models. Commun. Math. Sci. 8(3), 763–782 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Bahouri, J.-Y. Chemin, Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides. Arch. Ration. Mech. Anal. 127(2), 159–181 (1994)

    Article  MathSciNet  Google Scholar 

  3. J.W. Barrett, C. Schwab, E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15(6), 939–983 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.W. Barrett, E. Süli, Existence of global weak solutions to some regularized kinetic models for dilute polymers. Multiscale Model. Simul. 6(2), 506–546 (electronic) (2007)

    Google Scholar 

  5. J.W. Barrett, E. Süli, Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Models Methods Appl. Sci. 18(6), 935–971 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.W. Barrett, E. Süli, Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: finitely extensible nonlinear bead-spring chains. Math. Models Methods Appl. Sci. 21(6), 1211–1289 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.W. Barrett, E. Süli, Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type bead-spring chains. Math. Models Methods Appl. Sci. 22(5) (2012, to appear)

    Google Scholar 

  8. R.B. Bird, R. Amstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1 (Wiley, New York, 1977)

    Google Scholar 

  9. R.B. Bird, C. Curtiss, R. Amstrong, O. Hassager, Dynamics of Polymeric Liquids, Kinetic Theory, vol. 2 (Wiley, New York, 1987)

    Google Scholar 

  10. D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry. Volume 33 of Graduate Studies in Mathematics (American Mathematical Society, Providence, 2001)

    Google Scholar 

  11. J.-Y. Chemin, N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33(1), 84–112 (electronic) (2001)

    Google Scholar 

  12. X. Chen, J.-G. Liu, Global weak entropy solution to Doi-Saintillan-Shelley model for active and passive rod-like and ellipsoidal particle suspensions. J. Differ. Equ. 254(7), 2764–2802 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Chupin, The FENE model for viscoelastic thin film flows. Methods Appl. Anal. 16(2), 217–261 (2009)

    MathSciNet  MATH  Google Scholar 

  14. L. Chupin, Fokker-Planck equation in bounded domain. Ann. Inst. Fourier (Grenoble) 60(1), 217–255 (2010)

    Google Scholar 

  15. L. Chupin, Global existence results for some viscoelastic models with an integral constitutive law. SIAM J. Math. Anal. 46(3), 1859–1873 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Constantin, Nonlinear Fokker-Planck Navier-Stokes systems. Commun. Math. Sci. 3(4), 531–544 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Constantin, C. Fefferman, E.S. Titi, A. Zarnescu, Regularity of coupled two-dimensional nonlinear Fokker-Planck and Navier-Stokes systems. Commun. Math. Phys. 270(3), 789–811 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Constantin, N. Masmoudi, Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D. Commun. Math. Phys. 278(1), 179–191 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Constantin, W. Sun, Remarks on Oldroyd-B and related complex fluid models. CMS 10, 33–73 (2012)

    MathSciNet  MATH  Google Scholar 

  20. P. Constantin, A. Zlatos, On the high intensity limit of interacting corpora. Commun. Math. Sci. 8(1), 173–186 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Degond, M. Lemou, M. Picasso, Viscoelastic fluid models derived from kinetic equations for polymers. SIAM J. Appl. Math. 62(5), 1501–1519 (electronic) (2002)

    Google Scholar 

  22. P. Degond, H. Liu, Kinetic models for polymers with inertial effects. Netw. Heterog. Media 4(4), 625–647 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. R.J. DiPerna, P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. (2) 130(2), 321–366 (1989)

    Google Scholar 

  24. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986)

    Google Scholar 

  25. Q. Du, C. Liu, P. Yu, FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4(3), 709–731 (electronic) (2005)

    Google Scholar 

  26. W. E, T. Li, P. Zhang, Well-posedness for the dumbbell model of polymeric fluids. Commun. Math. Phys. 248(2), 409–427 (2004)

    Google Scholar 

  27. E. Feireisl, Dynamics of Viscous Compressible Fluids. Volume 26 of Oxford Lecture Series in Mathematics and Its Applications (Oxford University Press, Oxford, 2004)

    Google Scholar 

  28. E. Fernández-Cara, F. Guillén, R.R. Ortega, Some theoretical results for viscoplastic and dilatant fluids with variable density. Nonlinear Anal. 28(6), 1079–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Fernández-Cara, F. Guillén, R.R. Ortega, Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26(1), 1–29 (1998)

    Google Scholar 

  30. E. Fernández-Cara, F. Guillén, R.R. Ortega, The Mathematical Analysis of Viscoelastic Fluids of the Oldryod Kind (2000)

    Google Scholar 

  31. J. Frehse, J. Málek, M. R užička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids. Commun. Partial Differ. Equ. 35(10), 1891–1919 (2010)

    Google Scholar 

  32. X. Gallez, P. Halin, G. Lielens, R. Keunings, V. Legat, The adaptive Lagrangian particle method for macroscopic and micro-macro computations of time-dependent viscoelastic flows. Comput. Methods Appl. Mech. Eng. 180(3-4), 345–364 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Grmela, H.C. Öttinger, Dynamics and thermodynamics of complex fluids. I and II. Development of a general formalism. Phys. Rev. E (3) 56(6), 6620–6655 (1997)

    Google Scholar 

  34. C. Guillopé, J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15(9), 849–869 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Guillopé, J.-C. Saut, Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér. 24(3), 369–401 (1990)

    MathSciNet  MATH  Google Scholar 

  36. L. He, P. Zhang, L 2 decay of solutions to a micro-macro model for polymeric fluids near equilibrium. SIAM J. Math. Anal. 40(5), 1905–1922 (2008/2009)

    Google Scholar 

  37. D. Hu, T. Lelièvre, New entropy estimates for Oldroyd-B and related models. Commun. Math. Sci. 5(4), 909–916 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Jourdain, C. Le Bris, T. Lelièvre, F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181(1), 97–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Jourdain, T. Lelièvre, Mathematical analysis of a stochastic differential equation arising in the micro-macro modelling of polymeric fluids, in Probabilistic Methods in Fluids (World Science Publisher, River Edge, 2003), pp. 205–223

    MATH  Google Scholar 

  40. B. Jourdain, T. Lelièvre, C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209(1), 162–193 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Keunings, Simulation of Viscoelastic Fluid Flow, in Fundamentals of Computer Modeling for Polymer Processing, ed. by C.L Tucker III (Carl Hanser Verlag, 1989)

    Google Scholar 

  42. R. Keunings, On the Peterlin approximation for finitely extensible dumbbells. J. Non-Newton. Fluid Mech. 86, 85–100 (1997)

    Article  Google Scholar 

  43. H.K. Kim, N. Masmoudi, Generating and adding flows on locally complete metric spaces. J. Dynam. Differ. Equ. 25(1), 231–256 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. O. Kreml, M. Pokorný, On the local strong solutions for the FENE dumbbell model. Discrete Contin. Dyn. Syst. Ser. S 3(2), 311–324 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Le Bris, T. Lelièvre, Multiscale modelling of complex fluids: a mathematical initiation, in Multiscale Modeling and Simulation in Science. Volume 66 of Lecture Notes Computer Science & Engineering (Springer, Berlin, 2009), pp. 49–137

    Google Scholar 

  46. Z. Lei, C. Liu, Y. Zhou, Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188(3), 371–398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Z. Lei, N. Masmoudi, Y. Zhou, Remarks on the blowup criteria for Oldroyd models. J. Differ. Equ. 248(2), 328–341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Z. Lei, Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit. SIAM J. Math. Anal. 37(3), 797–814 (electronic) (2005)

    Google Scholar 

  49. J. Leray, Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MathSciNet  MATH  Google Scholar 

  50. J. Leray, Essai sur les mouvements plans d’un liquide visqueux emplissant l’espace. Acta. Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  51. T. Li, P. Zhang, Mathematical analysis of multi-scale models of complex fluids. Commun. Math. Sci. 5(1), 1–51 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. F.-H. Lin, C. Liu, P. Zhang, On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58(11), 1437–1471 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. F.-H. Lin, C. Liu, P. Zhang, On a micro-macro model for polymeric fluids near equilibrium. Commun. Pure Appl. Math. 60(6), 838–866 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. F.-H. Lin, P. Zhang, Z. Zhang, On the global existence of smooth solution to the 2-D FENE dumbbell model. Commun. Math. Phys. 277(2), 531–553 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969

    MATH  Google Scholar 

  56. P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. 2. (The Clarendon Press Oxford University Press, New York, 1998). Compressible models, Oxford Science Publications

    Google Scholar 

  57. P.-L. Lions, N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. Ser. B 21(2), 131–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. P.-L. Lions, N. Masmoudi, Global existence of weak solutions to some micro-macro models. C. R. Math. Acad. Sci. Paris 345(1), 15–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. C. Liu, H. Liu, Boundary conditions for the microscopic FENE models. SIAM J. Appl. Math. 68(5), 1304–1315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Liu, J. Shin, Global well-posedness for the microscopic FENE model with a sharp boundary condition. J. Differ. Equ. 252, 641–662 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. N. Masmoudi, Well-posedness for the FENE dumbbell model of polymeric flows. Commun. Pure Appl. Math. 61(12), 1685–1714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows. J. Math. Pures Appl. (9) 96(5), 502–520 (2011)

    Google Scholar 

  63. N. Masmoudi, Regularity of solutions to the FENE model in the polymer elongation variable R (2011, in preparation)

    Google Scholar 

  64. N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math. 191(2), 427–500 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. N. Masmoudi, P. Zhang, Z. Zhang, Global well-posedness for 2D polymeric fluid models and growth estimate. Phys. D 237(10–12), 1663–1675 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. J.-G. Oldryod, Non-newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. London Ser. A 245, 278–297 (1958)

    Article  MathSciNet  Google Scholar 

  67. H.C. Öttinger, Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms (Springer-Verlag, Berlin, 1996)

    Book  MATH  Google Scholar 

  68. F. Otto, A.E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules. Commun. Math. Phys. 277(3), 729–758 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. R.G. Owens, T.N. Phillips, Computational Rheology (Imperial College Press, London, 2002)

    Book  MATH  Google Scholar 

  70. M. Renardy, Existence of slow steady flows of viscoelastic fluids with differential constitutive equations. Z. Angew. Math. Mech. 65(9), 449–451 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22(2), 313–327 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  72. M. Renardy, Mathematical Analysis of Viscoelastic Flows. Volume 73 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2000)

    Google Scholar 

  73. M. Renardy, Global existence of solutions for shear flow of certain viscoelastic fluids. J. Math. Fluid Mech. 11(1), 91–99 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  74. D. Saintillan, M.J. Shelley, Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett. 99(5), 058102 (2007)

    Google Scholar 

  75. D. Saintillan, M.J. Shelley, Active suspensions and their nonlinear models. Comptes Rendus Physique 14(6), 497–517 (2013)

    Article  Google Scholar 

  76. M.E. Schonbek, Existence and decay of polymeric flows. SIAM J. Math. Anal. 41(2), 564–587 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  77. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edn. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1995)

    Google Scholar 

  78. H. Zhang, P. Zhang, Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. 181(2), 373–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  79. L. Zhang, H. Zhang, P. Zhang, Global existence of weak solutions to the regularized Hookean dumbbell model. Commun. Math. Sci. 6(1), 85–124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Masmoudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Masmoudi, N. (2016). Equations for Polymeric Materials. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics