Skip to main content

Recent Advances Concerning Certain Class of Geophysical Flows

  • Living reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Abstract

This chapter is devoted to reviewing several recent developments concerning certain class of geophysical models, including the primitive equations (PEs) of atmospheric and oceanic dynamics and a tropical atmosphere model. The PEs for large-scale oceanic and atmospheric dynamics are derived from the Navier–Stokes equations coupled to the heat convection by adopting the Boussinesq and hydrostatic approximations, while the tropical atmosphere model considered here is a nonlinear interaction system between the barotropic mode and the first baroclinic mode of the tropical atmosphere with moisture.It is mainly concerned with the global well-posedness of strong solutions to these systems, with full or partial viscosity, as well as certain singular perturbation small-parameter limits related to these systems, including the small aspect ratio limit from the Navier–Stokes equations to the PEs, and a small relaxation parameter in the tropical atmosphere model. These limits provide a rigorous justification to the hydrostatic balance in the PEs and to the relaxation limit of the tropical atmosphere model, respectively. Some conditional uniqueness of weak solutions, and the global well-posedness of weak solutions with certain class of discontinuous initial data, to the PEs are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. P. Azérad, F. Guillén, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J. Math. Anal. 33, 847–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Bardos, M.C. Lopes Filho, D. Niu, H.J. Nussenzveig Lopes, E.S. Titi, Stability of two-dimensional viscous incompressible flows under three-dimensional perturbations and inviscid symmetry breaking. SIAM J. Math. Anal. 45, 1871–1885 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Brenier, Homogeneous hydrostatic flows with convec velocity profiles. Nonlinearity 12, 495–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Bresch, F. Guillén-González, N. Masmoudi, M.A. Rodríguez-Bellido, On the uniqueness of weak solutions of the two-dimensional primitive equations. Differ. Integr. Equs. 16, 77–94 (2003)

    MathSciNet  MATH  Google Scholar 

  6. D. Bresch, J. Lemoine, J. Simon, A vertical diffusion model for lakes. SIAM J. Math. Anal. 30, 603–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Brézis, T. Gallouet, Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4, 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equs. 5, 773–789 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Cao, A. Farhat, E.S. Titi, Global well-posedness of an inviscid three-dimensional pseudo-Hasegawa-Mima model. Commun. Math. Phys. 319, 195–229 (2013)

    Google Scholar 

  10. C. Cao, S. Ibrahim, K. Nakanishi, E.S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. Commun. Math. Phys. 337, 473–482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Cao, J. Li, E.S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity. Archiv. Ration. Mech. Anal. 214, 35–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Cao, J. Li, E.S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity. J. Differ. Equs. 257, 4108–4132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Cao, J. Li, E.S. Titi, Global well-posedness of the 3D primitive equations with only horizontal viscosity and diffusivity. Commun. Pure Appl. Math. 69, 1492–1531 (2016)

    Article  MATH  Google Scholar 

  14. C. Cao, J. Li, E.S. Titi, Strong solutions to the 3D primitive equations with horizontal dissipation: near H 1 initial data. arXiv:1607.06252 [math.AP]

    Google Scholar 

  15. C. Cao, J. Li, E.S. Titi, Global well-posedness of the 3D primitive equations with horizontal viscosities and vertical diffusion (preprint)

    Google Scholar 

  16. C. Cao, E.S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun. Pure Appl. Math. 56, 198–233 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Cao, E.S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166, 245–267 (2007). arXiv:0503028

    Google Scholar 

  18. C. Cao, E.S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion. Commun. Math. Phys. 310, 537–568 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Coti Zelati, A. Huang, I. Kukavica, R. Temam, M. Ziane, The primitive equations of the atmosphere in presence of vapour saturation. Nonlinearity 28, 625–668 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Constantin, C. Foias, Navier-Stokes Equations. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 1988)

    Google Scholar 

  21. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, revised edition. Text Book in Mathematics (CRC Press, Boca Raton, 2015)

    Google Scholar 

  22. D.M.W. Frierson, A.J. Majda, O.M. Pauluis, Dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit. Commun. Math. Sci. 2, 591–626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Giga, Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equs. 62, 182–212 (1986)

    MathSciNet  Google Scholar 

  24. Y. Giga, K. Inui, S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data. Quad. Mat. 4, 27–68 (1999)

    MathSciNet  MATH  Google Scholar 

  25. L. Giovanni, A first course in Sobolev spaces. Graduate Studies in Mathematics, vol. 105 (American Mathematical Society, Providence, 2009)

    Google Scholar 

  26. F. Guillén-González, N. Masmoudi, M.A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations. Differ. Integr. Equ. 14, 1381–1408 (2001)

    MathSciNet  MATH  Google Scholar 

  27. G. Haltiner, R. Williams, Numerical Weather Prediction and Dynamic Meteorology, 2nd edn. (Wiley, New York, 1984)

    Google Scholar 

  28. M. Hieber, T. Kashiwabara, Global well-posedness of the three-dimensional primitive equations in L p-space. Arch. Ration. Mech. Anal. 221, 1077–1115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Kato, Strong L p-solution of Navier-Stokes equation in \(\mathbb{R}^{n}\), with application to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  30. B. Khouider, A.J. Majda, A non-oscillatory well balanced scheme for an idealized tropical climate model: I. Algorithm and validation. Theor. Comput. Fluid Dyn. 19, 331–354 (2005)

    Article  MATH  Google Scholar 

  31. B. Khouider, A.J. Majda, A non-oscillatory well balanced scheme for an idealized tropical climate model: I. Algorithm and validation. Theor. Comput. Fluid Dyn. 19, 355–375 (2005)

    Article  MATH  Google Scholar 

  32. B. Khouider, A.J. Majda, S.N. Stechmann, Climate science in the tropics: waves, vortices and PDEs. Nonlinearity 26, R1–R68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. G.M. Kobelkov, Existence of a solution in the large for the 3D large-scale ocean dynamics equations. C. R. Math. Acad. Sci. Paris 343, 283–286 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. I. Kukavica, Y. Pei, W. Rusin, M. Ziane, Primitive equations with continuous initial data. Nonlinearity 27, 1135–1155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Kukavica, R. Temam, V. Vicol, M. Ziane, Local existence and uniqueness of solution for the hydrostatic Euler equations on a bounded domain. J. Differ. Equs. 250, 1719–1746 (2011)

    Article  MATH  Google Scholar 

  36. I. Kukavica, M. Ziane, The regularity of solutions of the primitive equations of the ocean in space dimension three. C. R. Math. Acad. Sci. Paris 345, 257–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. I. Kukavica, M. Ziane, On the regularity of the primitive equations of the ocean. Nonlinearity 20, 2739–2753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd English edn., revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and Its Applications, vol. 2 (Gordon and Breach/Science Publishers, New York/London/Paris, 1969)

    Google Scholar 

  39. R. Lewandowski, Analyse Mathématique et Océanographie (Masson, Paris, 1997)

    Google Scholar 

  40. J. Li, E.S. Titi, Global well-posedness of strong solutions to a tropical climate model. Discret. Contin. Dyn. Syst. 36, 4495–4516 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Li, E.S. Titi, A tropical atmosphere model with moisture: global well-posedness and relaxation limit. Nonlinearity 29, 2674–2714 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Li, E.S. Titi, Small Aspect Ratio Limit from Navier-Stokes Equations to Primitive Equations: Mathematical Justification of Hydrostatic Approximation (preprint)

    Google Scholar 

  43. J. Li, E.S. Titi, Existence and Uniqueness of Weak Solutions to Viscous Primitive Equations for Certain Class of Discontinuous Initial Data. arXiv:1512.00700

    Google Scholar 

  44. J.L. Lions, R. Temam, S. Wang, New formulations of the primitive equations of the atmosphere and appliations. Nonlinearity 5, 237–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. J.L. Lions, R. Temam, S. Wang, On the equations of the large-scale ocean. Nonlinearity 5, 1007–1053 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. J.L. Lions, R. Temam, S. Wang, Mathematical study of the coupled models of atmosphere and ocean (CAO III). J. Math. Pures Appl. 74, 105–163 (1995)

    MATH  Google Scholar 

  47. A.J. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, vol. 9 (American Mathematical Society, Providence, 2003)

    Google Scholar 

  48. A.J. Majda, Climate Science, Waves and PDEs for the Tropics (English summary) Nonlinear Partial Differential Equations. Abel Symposium, vol. 7 (Springer, Heidelberg, 2012), pp. 223–230

    Google Scholar 

  49. A.J. Majda, J.A. Biello, The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 60, 1809–1821 (2003)

    Article  MathSciNet  Google Scholar 

  50. A.J. Majda, P.E. Souganidis, Existence and uniqueness of weak solutions for precipitation fronts: a novel hyperbolic free boundary problem in several space variables. Commun. Pure Appl. Math. 63, 1351–1361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. N. Masmoudi, T.K. Wong, On the H s theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204, 231–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. J.D. Neelin, N. Zeng, A quasi-equilibrium tropical circulation model: formulation. J. Atmos. Sci. 57, 1741–1766 (2000)

    Article  Google Scholar 

  53. J. Pedlosky, Geophysical Fluid Dynamics, 2nd edn. (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  54. M. Petcu, R. Temam, M. Ziane, Some mathematical problems in geophysical fluid dynamics. Elsevier Handb. Numer. Anal. 14, 577–750 (2009)

    Article  MathSciNet  Google Scholar 

  55. J. Serrin, The initial value problem for the Navier-Stokes equations, in Nonlinear Problems, ed. by R.E. Langer (University of Wisconsin Press, Madison, 1963), pp. 69–98

    Google Scholar 

  56. J. Simon, Compact sets in the space L p(0, T; B). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Google Scholar 

  57. S.N. Stechmann, A.J. Majda, The structure of precipitation fronts for finite relaxation time. Theor. Comput. Fluid Dyn. 20, 377–404 (2006)

    Article  Google Scholar 

  58. T. Tachim Medjo, On the uniqueness of z-weak solutions of the three-dimensional primitive equations of the ocean. Nonlinear Anal. Real World Appl. 11, 1413–1421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, revised edition. Studies in Mathematics and Its Applications, vol. 2 (North-Holland Publishing Co., Amsterdam/New York, 1979)

    Google Scholar 

  60. R. Temam, M. Ziane, Some Mathematical Problems in Geophysical Fluid Dynamics. Handbook of Mathematical Fluid Dynamics, vol. III (North-Holland, Amsterdam, 2004), pp. 535–657

    Google Scholar 

  61. G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  62. W.M. Washington, C.L. Parkinson, An Introduction to Three Dimensional Climate Modeling (Oxford University Press, Oxford, 1986)

    MATH  Google Scholar 

  63. T.K. Wong, Blowup of solutions of the hydrostatic Euler equations. Proc. Am. Math. Soc. 143, 1119–1125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Q.C. Zeng, Mathematical and Physical Foundations of Numerical Weather Prediction (Science Press, Beijing, 1979)

    Google Scholar 

Download references

Acknowledgements

J.L. is thankful to the kind hospitality of Texas A&M University where part of this work was completed. This work was supported in part by the ONR grant N00014-15-1-2333 and the NSF grants DMS-1109640 and DMS-1109645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Li, J., Titi, E.S. (2016). Recent Advances Concerning Certain Class of Geophysical Flows. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics