Skip to main content

On Gentzen’s First Consistency Proof for Arithmetic

  • Chapter
Gentzen's Centenary

Abstract

If nowadays “Gentzen’s consistency proof for arithmetic” is mentioned, one usually refers to [3] while Gentzen’s first (published) consistency proof, i.e. [2], is widely unknown or ignored. The present paper is intended to change this unsatisfactory situation by presenting [2, IV. Abschnitt] in a slightly modified and modernized form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We omit conjunction ‘&’ in order to keep the focus on the essential things.

  2. 2.

    Cf. end of Sect. 2.

  3. 3.

    This ordinal assignment is essentially that of [4].

  4. 4.

    A similar rule is used in [4].

References

  1. W. Buchholz, Explaining Gentzen’s Consistency Proof within infinitary Proof Theory, in Computational Logic and Proof Theory. 5th Kurt Gödel Colloquium, KGC’97, ed. by G. Gottlob, A. Leitsch, D. Mundici. Lecture Notes in Computer Science, vol. 1298 (Springer, New York, 1997)

    Google Scholar 

  2. G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann. 112, 493–565 (1936)

    Article  MathSciNet  Google Scholar 

  3. G. Gentzen, Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften. Neue Folge 4, 19–44 (1938)

    Google Scholar 

  4. L.M. Kogan-Bernstein, Simplification of Gentzen’s reductions in the classical arithmetic. Zap. Nauchn. Sem. LOMI 105, 45–52 (1981), English translation: J. Math. Sci. 22(3) (1983)

    Google Scholar 

  5. M.E. Szabo, The collected Papers of Gerhard Gentzen (Amsterdam, North-Holland 1969)

    MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referee for careful reading and valuable comments which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Buchholz .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix we will show how Gentzen’s original ordinal assignment [2, Sect. 15] can be transformed into the assignment which we have used in Sect. 5. This transformation consists in essentially four steps.

Step 1::

We do not use exactly the same set of decimal fractions as Gentzen did. Gentzen defined his set of Ordnungszahlen (let’s call it \(\mathcal{O}_{G}\)) by: \(\mathcal{O}_{G}:=\{ n.u: n \in \mathbb{N}\;\&\;u \in \mathcal{M}_{n}\}\) where \(\mathcal{M}_{0}:=\{ 1,\, 11,\, 111,\ldots, 2\}\), \(\mathcal{M}_{n+1}:=\{ u_{0}0^{n+1}u_{1}0^{n+1}\ldots 0^{n+1}u_{l}: l \geq 0\;\&\;u_{0},\ldots,u_{l} \in \mathcal{M}_{n}\;\&\;0.u_{l} <_{\mathbb{R}}\cdots <_{\mathbb{R}}0.u_{0}\}\). This corresponds to representing ordinals in base 2 Cantor normal form, while here we shall use base ω. Instead of \(\mathcal{O}_{G}\) we define the set \(\mathcal{O}:=\{ n.u: n \in \mathbb{N}\;\&\;u \in M_{n}\}\), where M 0: = { 1}, \(M_{n+1}:=\{ u_{0}0^{n+1}u_{1}0^{n+1}\ldots 0^{n+1}u_{l}: l \geq 0\;\&\;u_{0},\ldots,u_{l} \in M_{n}\;\&\;0.u_{l} \leq _{\mathbb{R}}\cdots \leq _{\mathbb{R}}0.u_{0}\}\).

Step 2::

We define an embedding of \((\mathcal{O},<_{\mathbb{R}})\) into the set theoretic ordinals, namely for each ‘Ordnungszahl’ \(n.u \in \mathcal{O}\) we define an ordinal | n. u | ∈ On such that \(\forall n.u,m.\mathit{v} \in \mathcal{O}(n.u <_{\mathbb{R}}m.\mathit{v} \Rightarrow \vert n.u\vert <\vert m.\mathit{v}\vert )\) (Lemma 3).

Step 3::

We modify Gentzen’s assignment of ‘Ordnungszahlen’ to derivations [2, Sect. 15.2] according to the alterations made in step 1. For each derivation d we define its numerus \(\rho (d) \in \mathbb{N}\), mantissa \(\mu (d) \in \bigcup _{n\in \mathbb{N}}M_{n}\), and ‘Ordnungszahl’ \(\mathrm{Ord}(d):=\rho (d).\mu (d) \in \mathcal{O}\). Actually we only consider the crucial case where d ends with a chain-rule inference.

Step 4::

We show how the ordinal | Ord(d) | can be defined directly by recursion on the build-up of d, without referring to the decimal fraction Ord(d). Then we compare the involved recursion equations with the corresponding equations in the definition of \(\tilde{\mathsf{o}}(d)\), o(d) in Sect. 5.

Step 1.

Let {0, 1}+ denote the set of all finite nonempty words u over the alphabet {0, 1}, and let \(\{0, 1\}^{(+)}:=\{ u \in \{ 0, 1\}^{+}: \mbox{ the first and the last letter of $u$ is 1}\}\).

Further, let 0n denote the word consisting of n zeros. Each expression n. u (with \(n \in \mathbb{N}\) and u ∈ { 0, 1}(+)) will be identified with the real number denoted by it in the usual way.

Definition of \(M_{n} \subseteq \{ 0, 1\}^{(+)}\)

  1. 1.

    M 0: = { 1};

  2. 2.

    \(M_{n+1}:=\{ u_{0}0^{n+1}u_{1}0^{n+1}\ldots 0^{n+1}u_{l}: l \geq 0\;\&\;u_{0},\ldots,u_{l} \in M_{n}\;\&\;0.u_{l} \leq _{\mathbb{R}}\cdots \leq _{\mathbb{R}}0.u_{0}\}\).

Further we set \(M:=\bigcup _{n\in \mathbb{N}}M_{n}\). The elements of M are called mantissas.

Definition

\(\mathrm{h}: M \rightarrow \mathbb{N}\), \(\mathrm{h}(u):=\min \{ n: u \in M_{n}\}\).

Remark

\(M_{n} \subseteq M_{n+1}\), and h(u) is the maximal number of consecutive zeros in u.

Lemma 1

If \(u = u_{0}0^{n+1}\ldots 0^{n+1}u_{l} \in M_{n+1}\) and \(\text{v} = \text{v}_{0}0^{n+1}\ldots 0^{n+1}\text{v}_{k} \in M_{n+1}\) with \(u_{0},\ldots,u_{l},\text{v}_{0},\ldots,\text{v}_{k} \in M_{n}\) , then \(0.u <_{\mathbb{R}}0.\text{v}\) if, and only if, \(l <k\;\&\;\forall i \leq l(u_{i} = \text{v}_{i})\)  or  \(\exists j \leq \min \{ l,k\}\big(\forall i <j(u_{i} = \text{v}_{i})\;\&\;0.u_{j} <_{\mathbb{R}}0.\text{v}_{j}\big)\) .

Proof

Straightforward. □ 

Definition

\(\mathcal{O}:=\{ n.u: n <\omega \; \&\;u \in M_{n}\}\) (Ordnungszahlen)

Step 2. :

Definition of |u| n ∈ On for u ∈ M n

  1. 1.

     | 1 | 0: = 0.

  2. 2.

    If \(u = u_{0}0^{n+1}\ldots 0^{n+1}u_{l} \in M_{n+1}\), then \(\vert u\vert _{n+1}:=\omega ^{\vert u_{0}\vert _{n}} + \cdots +\omega ^{\vert u_{l}\vert _{n}}\).

As usual we set \(\omega _{0}(\alpha ):=\alpha\), \(\omega _{n+1}(\alpha ):=\omega ^{\omega _{n}(\alpha )}\).

Lemma 2

For u ∈ M n the following holds:

  1. (a)

    \(\vert u\vert _{n+k} =\omega _{k}(\vert u\vert _{n})\) ,

  2. (b)

    \(\omega _{n}(0) \leq \vert u\vert _{n} <\omega _{n+1}(0)\) .

Definition

For \(n.u \in \mathcal{O}\) let | n. u | : = | u |  n  ∈ On.

Lemma 3

\(n.u \in \mathcal{O}\;\&\;m.\text{v} \in \mathcal{O}\;\&\;n.u <_{\mathbb{R}}m.\text{v}\; \Rightarrow \;\vert n.u\vert <\vert m.\text{v}\vert\) .

Proof by induction on the length of u: Case n < m: Then \(\vert n.u\vert = \vert u\vert _{n} <\omega _{n+1}(0) \leq \omega _{m}(0) \leq \vert \text{v}\vert _{m} = \vert m.\text{v}\vert\). Case n = m: Then \(0.u <_{\mathbb{R}}0.\text{v}\) and u, v ∈ M n with n > 0. Hence \(u = u_{0}0^{n}\ldots 0^{n}u_{l} \in M_{n}\) and \(\text{v} = \text{v}_{0}0^{n}\ldots 0^{n}\text{v}_{k} \in M_{n}\) with \(u_{0},\ldots,u_{l},\text{v}_{0},\ldots,\text{v}_{k} \in M_{n-1}\). By Lemma 1 it follows that one of the following two cases applies:

  1. (i)

    \(l <k\;\&\;\forall i \leq l(u_{i} = \text{v}_{i})\): Then trivially \(\vert u\vert _{n} <\vert \text{v}\vert _{n}\).

  2. (ii)

    \(\forall i <j(u_{i} = \text{v}_{i})\;\&\;0.u_{j} <_{\mathbb{R}}0.\text{v}_{j}\) for some \(j \leq \min \{ l,k\}\):Then \(\forall i \in \{ j,\ldots,l\}(0.u_{i} <_{\mathbb{R}}0.\text{v}_{j})\) and thus, by IH, \(\forall i \in \{ j,\ldots,l\}(\vert u_{i}\vert _{n-1} <\vert \text{v}_{j}\vert _{n-1})\). Hence \(\vert u\vert _{n} =\omega ^{\vert \text{v}_{0}\vert _{n-1}} + \cdots +\omega ^{\vert \text{v}_{j-1}\vert _{n-1}} +\omega ^{\vert u_{j}\vert _{n-1}} + \cdots +\omega ^{\vert u_{l}\vert _{n-1}} <\omega ^{\vert \text{v}_{0}\vert _{n-1}} + \cdots +\omega ^{\vert \text{v}_{j}\vert _{n-1}} \leq \vert \text{v}\vert _{n}\).

Step 3. :

The following are more or less Gentzen’s own words (in [2, 15.2])—of course with some alterations enforced by the modifications made in step 1.

To each given derivation d we assign an ‘Ordnungszahl’ \(\mathrm{Ord}(d):=\rho (d).\mu (d) \in \mathcal{O}\) according to the following recursive rule: (…) If the endsequent of d is the conclusion of a ‘chain-rule’ inference (i.e., if \(d = \mathsf{K}_{\Pi }^{r}d_{0}\ldots d_{l}\) ) we consider the mantissas u i = μ(d i ) of the ‘Ordnungszahlen’ of the derivations d i ; suppose that ν is the maximum number of consecutive zeros in all of these mantissas (i.e., \(\nu =\max _{i\leq l}\mathrm{h}(u_{i})\) ). The mantissas are written down from left to right according to their size (the largest one first) and any two successive mantissas are seperated by ν+1 zeros. (It may well be that several successive mantissas are equal.) The result is the mantissa μ(d) of the ordinal number for the whole derivation; i.e., \(\mu (d):= u_{\sigma (0)}0^{\nu +1}u_{\sigma (1)}0^{\nu +1}\ldots 0^{\nu +1}u_{\sigma (l)}\) where \(\sigma\) is an appropriate permutation of {0,…,l}, and u i = μ(d i ). As the numerus ρ(d) we take the least natural number ρ whose excess over the maximum number of consecutive zeros in the mantissa is ≥ 0 and, firstly, is not more than 1 less than the corresponding excess in any of the ordinal numbers for the derivations of the premises and, secondly, is not less than the rank of the succedent formula of any one of the premises preceding the major premise (14.25). W.l.o.g. we may assume here that l ≥ 1 and therefore \(\mathrm{h}(\mu (d)) =\nu +1\). So ρ(d) is the least number ρ such that (i) \(\rho -(\nu +1) \geq \rho (d_{i}) -\mathrm{h}(u_{i}) - 1\) for i = 0, , l, and (ii) \(\rho -(\nu +1) \geq r\), which amounts to: \(\rho (d) -\mathrm{h}(\mu (d)) =\max (\{\rho (d_{i}) -\mathrm{h}(\mu (d_{i})) - 1: i \leq l\} \cup \{ r\})\).

Step 4. :

Let h(d): = h(μ(d)), \(\mathrm{exc}(d):=\rho (d) -\mathrm{h}(d)\), and \(\widehat{\mathsf{o}}(d):= \vert \mu (d)\vert _{\mathrm{h}(d)}\)

Then

  1. (1)

    \(\vert \mathrm{Ord}(d)\vert =\omega _{\mathrm{exc}(d)}(\widehat{\mathsf{o}}(d))\)

    and for \(d = \mathsf{K}_{\Pi }^{r}d_{0}\ldots d_{l}\) we have the recursion equations

  2. (2)

    \(\mathrm{h}(d) =\max _{i\leq l}\mathrm{h}(d_{i}) + 1\), and

  3. (3)

    \(\mathrm{exc}(d) =\max (\{\mathrm{exc}(d_{i}) - 1: i \leq l\} \cup \{ r\})\).

  4. (4)

    \(\widehat{\mathsf{o}}(d) =\omega ^{\alpha _{0}}\,\#\,\cdots \,\#\,\omega ^{\alpha _{l}}\) with \(\alpha _{i}:=\omega _{\nu -\mathrm{h}(d_{i})}(\widehat{\mathsf{o}}(d_{i}))\) and \(\nu:=\max _{i\leq l}\mathrm{h}(d_{i})\).

Proof of (1) and (4):

  1. (1)

    \(\vert \mathrm{Ord}(d)\vert = \vert \rho (d).\mu (d)\vert = \vert \mu (d)\vert _{\rho (d)} =\omega _{\rho (d)-\mathrm{h}(d)}(\widehat{\mathsf{o}}(d)) =\omega _{\mathrm{exc}(d)}(\widehat{\mathsf{o}}(d))\).

  2. (4)

    By definition, \(\mu (d) = u_{\sigma (0)}0^{\nu +1}\ldots 0^{\nu +1}u_{\sigma (l)}\) with \(u_{i} =\mu (d_{i})\) and \(\nu =\max _{i\leq l}\mathrm{h}(d_{i})\). Hence \(\nu +1 = \mathrm{h}(\mu (d)) = \mathrm{h}(d)\)\(\widehat{\mathsf{o}}(d) = \vert \mu (d)\vert _{\nu +1} =\omega ^{\vert u_{0}\vert _{\nu }}\,\#\,\cdots \,\#\,\omega ^{\vert u_{l}\vert _{\nu }}\), and \(\vert u_{i}\vert _{\nu } = \vert \mu (d_{i})\vert _{\nu }\stackrel{L.2a}{=}\omega _{\nu -\mathrm{h}(d_{i})}(\vert \mu (d_{i})\vert _{\mathrm{h}(d_{i})})\).

Observation: In case that \(\mathrm{h}(\mu (d_{0})) = \cdots = \mathrm{h}(\mu (d_{l}))\) we have

(5) \(\widehat{\mathsf{o}}(d) =\omega ^{\widehat{\mathsf{o}}(d_{0})}\,\#\,\cdots \,\#\,\omega ^{\widehat{\mathsf{o}}(d_{l})}\).

Now compare (1), (3), (5) with the corresponding clauses in the definitions of o(d), dg(d), \(\tilde{\mathsf{o}}(d)\) in Sect. 5:

  1. (1)’

    \(o(d) =\omega _{\mathrm{dg}(d)}(\tilde{\mathsf{o}}(d))\)

  2. (3)’

    \(\mathrm{dg}(d) =\max (\{\mathrm{dg}(d_{i})-1: i \leq l\} \cup \{ r\})\)

  3. (5)’

    \(\tilde{\mathsf{o}}(d) =\omega ^{\tilde{\mathsf{o}}(d_{0})}\#\cdots \#\omega ^{\tilde{\mathsf{o}}(d_{l})}\)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buchholz, W. (2015). On Gentzen’s First Consistency Proof for Arithmetic. In: Kahle, R., Rathjen, M. (eds) Gentzen's Centenary. Springer, Cham. https://doi.org/10.1007/978-3-319-10103-3_4

Download citation

Publish with us

Policies and ethics