Skip to main content

Sensitivity of Modern Oil Paints to Solvents. Effects on Synthetic Organic Pigments

  • Chapter
  • First Online:
Issues in Contemporary Oil Paint

Abstract

Synthetic organic pigments are widely used in contemporary artists- and house paints. They can be found in artworks since 1900. Because of their special particle properties and their solubility in solvents, however, synthetic organic pigments pose a special challenge in conservation treatments. Analyses have been carried out on 23 synthetic organic pigments in oil paint films with six representative solvents. Solubility of the pigments upon solvent exposure has been determined by UV-Vis-spectroscopy. Some pigments have shown high solubility and were even extracted out of the oil paint film. Detailed examination on the influence of pigment extractions from the oil paint film was carried out with light microscopy, Raman- and ATR-FTIR spectroscopy. Swab tests elucidated that all pigments are very sensitive to the combination of (mostly) polar solvents and mechanical stress. The study demonstrates that mechanically applying solvents to paint surfaces containing synthetic organic pigments is delicate due to (a) the solubility of the pigments themselves, (b) mechanical removal of pigment particles – likely supported by the temporary destabilization of the binder. These findings have important implications to conservation practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Mussini and Norma (H. Schmincke & Co. GmbH & Co. KG) paints were applied in a wet film thickness of 100 μm with a film applicator Model 360 (Erichsen GmbH & Co. KG) on glass (Slides Assistent Elka 2400) and silicon Hostaphanfoil® RNT 36 (Kremer GmbH & Co. KG). After a preliminary drying of 7 days under room conditions, the samples were artificially aged. The lighting was done with the fluorescent tubes True Lite® 5,500 K and Philips® UV–20 W/08 F20 T12 BLB with ≈5,800 lm/m2 and 557 mW lm−1/≈3,200 mW/m2 at ≈35 °C/≈45–50 %rH for a minimum of 6 months.

  2. 2.

    Perkin Elmer Lambda 650 UV/VIS/NIR spectrometer in quartz cuvettes (10 mm deep K282) over the spectral range of 200–1,000 nm at a resolution of 1 nm. Quantification was carried out in relation to the specific pigment absorption λ max (Blumenroth 2010). It was measured at a time interval of 1 min over a period of 16 min.

  3. 3.

    Avatar 360 FT-IR (Thermo Nicolet) ATR ZnSe-crystal Avatar Smart Miracle with 32 Scans and resolution of 4 cm−1.

  4. 4.

    Renishaw InVia Raman-spectrometer: 785 nm excitation, <12,1 mW on sample, 24 s per spot cumulative mode 6 × 4s, 1 μm step size, 100× objective, slit 65 μm standard in static mode, grating 1,200 l/mm, pinhole IN.

  5. 5.

    Carbon evaporation coater Cressington Carbon Coater 108; embedding medium Technovit 2000LC.

  6. 6.

    100 μm oil paint films on slides, commercial cotton swabs.

References

  • Binkowski S et al (2000) Preparation of pigments on modified precipitated silicas. Dyes Pigments 47:247–257

    Article  CAS  Google Scholar 

  • Blumenroth D (2010) Die Lösemittelempfindlichkeit synthetisch-organischer Pigmente in Ölfarben. MA-thesis, Berner Fachhochschule, Konservierung und Restaurierung HKB, Bern

    Google Scholar 

  • Bugnon P (1995) Surface treatment of pigments. Treatment with inorganic materials. Prog Org Coat 29:39–43

    Article  Google Scholar 

  • de Keijzer M (1988) The blue, violet and green modern synthetic organic pigments of the twentieth century uses as artists’ pigments. In: Modern organic materials. Preprints of the meeting, Edinburgh 1988. Scottish Society for Conservation and Restoration, Edinburgh, pp 97–103

    Google Scholar 

  • de Keijzer M (1989) The colourful twentieth century. In: Modern art: the restoration and techniques of modern paper and paints – the proceedings of a conference. The United Kingdom Institute of Conservation, London, pp 13–20

    Google Scholar 

  • de Keijzer M (1999) A survey of red and yellow modern synthetic organic artists’ pigments discovered in the 20th century and used in oil colours. In: 12th Triennal meeting Lyon 29th August–3rd September, pp 369–374

    Google Scholar 

  • de Keijzer M (2002) The history of modern synthetic inorganic and organic artists’ pigments. In: Contributions to conservation: research in conservation at the Netherlands Institute for Cultural Heritage. James & James, London, pp 42–54

    Google Scholar 

  • Faulkner EB (2009) High performance pigments. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Fremout W, Saverwyns S (2012) Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J Raman Spectrosc 43:1536–1544

    Article  CAS  Google Scholar 

  • Fritsch A (2006) Hansa®-Pigmente: Werkstoffgeschichte, Werkstofftechnologie und Analytik. Diplomarbeit, Hochschule der Künste Bern, Konservierung und Restaurierung, Bern

    Google Scholar 

  • Frowein S (2004) Synthetische organische Pigmente in zeitgenössischen Künstlerfarben – Angebot, neue Entwicklungen und Nachweismöglichkeiten. Diplomarbeit, Technische Universität, München

    Google Scholar 

  • Fu SH, Fang KJ (2007) Preparation of styrene-maleic acid copolymers and its application in encapsulated pigment red 122 dispersion. J Appl Polym Sci 105(2):317–321

    Article  CAS  Google Scholar 

  • Herbst W, Hunger K (1995) Industrielle Organische Pigmente: Herstellung, Eigenschafen, Anwendung, 2. Auflage. VCH-Verlagsgesellschaft, Weinheim

    Book  Google Scholar 

  • Heumann K, Friedländer P (eds) (1898) Die Anilinfarben und ihre Fabrikation. Vieweg Verlag, Braunschweig

    Google Scholar 

  • Hübner K (2006) 150 Jahre Mauvein. Chemie unserer Zeit 40:274–275

    Article  Google Scholar 

  • Kalbeek N (2005) Identification of synthetic organic pigments by characteristic color reactions. Stud Conserv 50(3):205–229

    Article  Google Scholar 

  • Lelu S (2003) Encapsulation of an organic phthalocyanine blue pigment into polystyrene latex particles using a mini-emulsion polymerization process. Polym Int 52(4):542–547

    Article  CAS  Google Scholar 

  • Lomax QS, Learner T (2006) A review of the classes, structures, and methods of analyses of synthetic organic pigments. J Am Inst Conserv 45(2):107–125

    Article  Google Scholar 

  • Lutzenberger K (2009) Künstlerfarben im Wandel – Synthetische organische Pigmente des 20. Jahrhunderts und Möglichkeiten ihrer zerstörungsarmen, analytischen Identifizierung. Herbert Utz Verlag, München

    Google Scholar 

  • Marcus CM (1998) The properties of solvents. John Wiles & Sons, Chichester

    Google Scholar 

  • Ropret P, Centeno SA, Bukovec P (2008) Raman identification of yellow synthetic organic pigments in modem and contemporary paintings: reference spectra and case studies. Spectrochim Acta A Mol Biomol Spectrosc 69:486–497

    Article  Google Scholar 

  • Schäning A, Schreiner M, Jembrih-Simbuerger D (2005) Identification and classification of synthetic organic pigments of a collection of the 19th and 20th century by FTIR. In: Piccolo M (ed) Proceedings of the sixth Infrared and Raman Users Group Conference (IRUG-6), Florence, 302–305, 2004

    Google Scholar 

  • Scherrer NC, Zumbuehl S, Delavy F, Fritsch A, Kuehnen R (2009) Synthetic organic pigments of the 20th and 21th century relevant to artist’s paint – Raman spectra reference collection. Spectrochim Acta A Mol Biomol Spectrosc 73:505–524

    Article  Google Scholar 

  • Schröder J (1988) Surface treatment of pigments. Prog Org Coat 16:3–17

    Article  Google Scholar 

  • Schulte F, Brezinka KW, Lutzenberger K, Stege H, Panne U (2008) Raman spectroscopy of synthetic organic pigments used in 20th century works of art. J Raman Spectrosc 29:1455–1463

    Article  Google Scholar 

  • Sirikittikul D (2004) Modification of pigment surface with polymer monolayer. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Smith HM (2002) High performance pigments. Wiley-VCH, Weinheim

    Google Scholar 

  • Strauss I (1984) Übersicht über synthetisch-organische Künstlerpigmente und Möglichkeiten ihrer Identifizierung. Maltechnik/Restauro Nr 4:29–44

    Google Scholar 

  • Tiarks F, Landfester K, Antonietti M (2001) Encapsulation of carbon black by mini-emulsion polymerization. Macromol Chem Phys 202:51–60

    Article  CAS  Google Scholar 

  • Van den Berg JDJ (2002) Analytical chemical studies on traditional linseed oil paints, Academic Proefschrift. PhD thesis, Universiteit Amsterdam

    Google Scholar 

  • Vandenabeele P, Moens L, Edwards HGM, Dams R (2000) Raman spectroscopic database of azo pigments and application to modern art studies. J Raman Spectrosc 31:509–517

    Article  CAS  Google Scholar 

  • Viala P (2002) Pigment encapsulation by emulsion polymerization, redispersible in water. Macromol Symp 187(1):651–662

    Article  CAS  Google Scholar 

  • Yuan J, Zhou S, Gu G (2005) Encapsulation of organic pigment particles with silica via sol-gel process. J Sol-Gel Sci Technol 36:265–274

    Article  CAS  Google Scholar 

  • Yuan J, Zhou S, Wu L, You B (2006) Organic pigment particles coated with titania via sol-gel process. J Phys Chem B 110:388–394

    Article  CAS  Google Scholar 

  • Yuan J, Xing W, Gu G, Wu L (2008) The properties of organic pigment encapsulated with assembly technique. Dye Pigment 76:463–469

    Article  CAS  Google Scholar 

  • Zerr G, Rübenkamp R (1921) Handbuch der Farbenfabrikation. Union Deutsche Verlagsgesellschaft, Berlin

    Google Scholar 

  • Zumbühl S (2008) Material choice in the context of the artistic working phase – The use of synthetic organic colorants by Alexej von Jawlensky (1864–1941), Scientific workshop at the Doerner Institute München, Germany; Permanent Yellow, Irgazine Red, Heliogen Blue and Co.: Towards an improved micro-identification of synthetic organic pigments and dyestuffs in works of modern art, 12. Sept 2008

    Google Scholar 

  • Zumbühl S (2011) Lösemittelempfindlichkeit von modernen Farbsystemen – Parametrisierung der Lösemittelsensitivität von Öl-, Alkyd- und Acryl-Künstlerfarben. Dissertation, Staatliche Akademie der Bildenden Künste Stuttgart, Fachbereich Kunsttechnologie, Stuttgart

    Google Scholar 

  • Zumbühl S, Scherrer N, Ferreira E, Hons S, Müller M, Kühnen R, Navi P (2011) Accelerated ageing of drying oil paint – an FTIR study on the chemical alteration. Zeitschrift für Kunsttechnologie und Konservierung 25(2):139–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Blumenroth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blumenroth, D., Zumbühl, S., Scherrer, N.C., Müller, W. (2014). Sensitivity of Modern Oil Paints to Solvents. Effects on Synthetic Organic Pigments. In: van den Berg, K., et al. Issues in Contemporary Oil Paint. Springer, Cham. https://doi.org/10.1007/978-3-319-10100-2_23

Download citation

Publish with us

Policies and ethics