Skip to main content

Primary Current Distribution and Electrode Geometry

  • Chapter
  • First Online:
Stimulation and Recording Electrodes for Neural Prostheses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC,volume 78))

Abstract

The current density pattern on the surface of an electrode depends on the electrode shape and position [9, 11, 12, 14, 17]. It affects the corrosion behavior of the electrodes considerably. If electrode polarization is ignored, it was shown in [12] that on a disk electrode, with the surface in the same level as the surface of the surrounding insulator, the current density increases from the center of the disk while approaching the edge, with theoretically an infinite value at the edge. This assumption (no electrode polarization) can be made if the potential on the electrolyte side of the double layer is equal to that of the electrode. The current density under this condition is called primary current distribution. This state prevails at high frequency when the double layer capacitance behaves as a short circuit [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja AK, Behrend MR, Whalen JJ, Humayun MS, Weiland JD (2008) The dependence of spectral impedance on disc microelectrode radius. Biomedical Engineering, IEEE Transactions on 55(4):1457–1460, DOI 10.1109/TBME.2007.912430

    Article  Google Scholar 

  2. Barnett DW, Fahy JB, Wu HJ, Lytle A, Kim Y (1988) Finite element model applications in defibrillation and external cardiac pacing. In: Engineering in Medicine and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE, pp 200–201 vol. 1, DOI 10.1109/IEMBS.1988.94477

  3. Behrend MR, Ahuja AK, Weiland JD (2008) Dynamic current density of the disk electrode double-layer. Biomedical Engineering, IEEE Transactions on 55(3):1056–1062, DOI 10.1109/TBME.2008.915723

    Article  Google Scholar 

  4. Brummer S, Turner M (1975) Electrical stimulation of the nervous system: The principle of safe charge injection with noble metal electrodes. Bioelectrochemistry and Bioenergetics 2(1):13–25, DOI 10.1016/0302-4598(75)80002-X, URL http://www.sciencedirect.com/science/article/pii/030245987580002X

  5. Brummer SB, Turner MJ (1977a) Electrical stimulation with Pt electrodes: A method for determination of “real” electrode areas. Biomedical Engineering, IEEE Transactions on BME-24(5):436–439, DOI 10.1109/TBME.1977.326178

    Article  Google Scholar 

  6. Brummer SB, Turner MJ (1977b) Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. Biomedical Engineering, IEEE Transactions on BME-24(1):59–63, DOI 10.1109/TBME.1977.326218

    Article  Google Scholar 

  7. Clark GM, Shepherd RK, Patrick JF, Black RC, Tong YC (1983) Design and fabrication of the banded electrode arraya. Annals of the New York Academy of Sciences 405(1):191–201, DOI 10.1111/j.1749-6632.1983.tb31632.x, URL http://dx.doi.org/10.1111/j.1749-6632.1983.tb31632.x

  8. Henley IE, Fisher AC (2003) Computational electrochemistry: The simulation of voltammetry in microchannels with low conductivity solutions. The Journal of Physical Chemistry B 107(27):6579–6585, DOI 10.1021/jp030238k, URL http://pubs.acs.org/doi/abs/10.1021/jp030238k, http://pubs.acs.org/doi/pdf/10.1021/jp030238k

  9. Humayun MS (2001) Intraocular retinal prosthesis

    Google Scholar 

  10. Hung A, Zhou D, Greenberg R, Judy J (2003) Dynamic electrochemical simulation of micromachined electrodes for neural-stimulation systems. In: Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, pp 200–203, DOI 10.1109/CNE.2003.1196792

  11. Ksienski DA (1992) A minimum profile uniform current density electrode. Biomedical Engineering, IEEE Transactions on 39(7):682–692, DOI 10.1109/10.142643

    Article  Google Scholar 

  12. Newman J (1966) Resistance for flow of current to a disk. Journal of the electrochemical society, May, 501–502

    Google Scholar 

  13. Rubinstein JT (1988) Quasi-static analytical models of electrodes and electrode arrays for electrical stimulation of the cochlea, auditory nerve and cochlear nucleus. Thesis, University of Washington

    Google Scholar 

  14. Rubinstein JT, Spelman FA, Soma M, Suesserman MF (1987) Current density profiles of surface mounted and recessed electrodes for neural prostheses. Biomedical Engineering, IEEE Transactions on BME-34(11):864–875, DOI 10.1109/TBME.1987.326007

    Article  Google Scholar 

  15. Shepherd RK, Murray MT, Hougiton ME, Clark GM (1985) Scanning electron microscopy of chronically stimulated platinum intracochlear electrodes. Biomaterials 6(4):237–242, DOI 10.1016/0142-9612(85)90019-5, URL http://www.sciencedirect.com/science/article/pii/0142961285900195

  16. Wang B, Weiland JD (2012) Reduction of current density at disk electrode periphery by shaping current pulse edges. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp 5138–5141, DOI 10.1109/EMBC.2012.6347150

  17. Wiley JD, Webster JG (1982) Analysis and control of the current distribution under circular dispersive electrodes. Biomedical Engineering, IEEE Transactions on BME-29(5):381–385, DOI href10.1109/TBME.1982.32491010.1109/TBME.1982.324910

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Aryan, N.P., Kaim, H., Rothermel, A. (2015). Primary Current Distribution and Electrode Geometry. In: Stimulation and Recording Electrodes for Neural Prostheses. SpringerBriefs in Electrical and Computer Engineering, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-10052-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10052-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10051-7

  • Online ISBN: 978-3-319-10052-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics