Skip to main content

Leptin, Obesity, and Leptin Resistance

  • Chapter
  • First Online:
Leptin

Abstract

The cloning of leptin in 1994 was an important milestone in obesity research. In those days obesity was rather stigmatized as a condition caused by lack of character and self-control. With leptin and its receptor being the first single genes that could cause morbid obesity in man and mice, it is now appreciated that obesity is caused by a dysregulation of central neuronal circuits. Unfortunately, the high hopes that leptin would cure obesity were quickly dampened by the discovery that most obese humans have increased leptin levels and develop leptin resistance. It is now hoped that leptin resistance can be overcome by drugs that enhance leptin sensitivity. We review current knowledge of the mechanisms that cause leptin resistance and factors that influence leptin resistance and sensitivity. This topic is further discussed in the context of how and if improvement of leptin resistance can hold the key to cure human obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ob/ob mice:

Leptin-deficient mice

db/db mice:

Leptin receptor-deficient mice

BBB:

Blood–brain barrier

LepRb:

Long form leptin receptor

CSF:

Cerebrospinal fluid

JAK2:

Janus-kinase-2

Y985/1077/1138:

Tyrosine residues 985/1077/1138

SHP-2:

Src homology-2 domain protein

MAPK:

Mitogen-activated-protein-kinase

STAT3/5:

Signal-transducer-and-acti- vator-of transcription-3/5

pSTAT3:

Phosphor-STAT3

SOCS-3:

Suppressor-of-cytokine-sig-naling-3

PTP1B:

Phosphotyrosine phospha tase-1B

HFD:

High-fat diet

DIO:

Diet-induced obesity

ARC:

Arcuate nucleus

α-MSH:

α-Melanocyte-stimulating hormone

AgRP:

Agouti-related protein

LPS:

Lipopolysaccharides

CVO:

Circumventricular organ

ME:

Median eminence

VMH:

Ventromedial hypothalamus

ER:

Endoplasmatic reticulum

References

  1. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  PubMed  Google Scholar 

  2. Coleman DL. A historical perspective on leptin. Nat Med. 2010;16(10):1097–9.

    Article  CAS  PubMed  Google Scholar 

  3. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341(12):879–84.

    Article  CAS  PubMed  Google Scholar 

  4. Frank S, Heni M, Moss A, von Schnurbein J, Farooqi S, Haring HU, et al. Long-term stabilization effects of leptin on brain functions in a leptin-deficient patient. PLoS One. 2013;8(6):e65893.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte Jr D. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med. 1996;2(5):589–93.

    Article  CAS  PubMed  Google Scholar 

  6. Schwartz MW, Seeley RJ. The new biology of body weight regulation. J Am Diet Assoc. 1997;97(1):54–8.

    Article  CAS  PubMed  Google Scholar 

  7. Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med. 1995;1(12):1311–4.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P, et al. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest. 2001;108(8):1113–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Guo K, McMinn JE, Ludwig T, Yu YH, Yang G, Chen L, et al. Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities. Endocrinology. 2007;148(8):3987–97.

    Article  CAS  PubMed  Google Scholar 

  10. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17(2):305–11.

    Article  CAS  PubMed  Google Scholar 

  11. Maness LM, Banks WA, Kastin AJ. Persistence of blood-to-brain transport of leptin in obese leptin-deficient and leptin receptor-deficient mice. Brain Res. 2000;873(1):165–7.

    Article  CAS  PubMed  Google Scholar 

  12. Scarpace PJ, Tumer N. Peripheral and hypothalamic leptin resistance with age-related obesity. Physiol Behav. 2001;74(4–5):721–7.

    Article  CAS  PubMed  Google Scholar 

  13. Banks WA, King BM, Rossiter KN, Olson RD, Olson GA, Kastin AJ. Obesity-inducing lesions of the central nervous system alter leptin uptake by the blood-brain barrier. Life Sci. 2001;69(23):2765–73.

    Article  CAS  PubMed  Google Scholar 

  14. El Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest. 2000;105(12):1827–32.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 2003;421(6925):856–9.

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84(3):491–5.

    Article  CAS  PubMed  Google Scholar 

  17. Coleman DL. Diabetes-obesity syndromes in mice. Diabetes. 1982;31(Suppl 1 Pt 2):1–6.

    Article  CAS  PubMed  Google Scholar 

  18. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83(7):1263–71.

    Article  CAS  PubMed  Google Scholar 

  19. Tartaglia LA. The leptin receptor. J Biol Chem. 1997;272(10):6093–6.

    Article  CAS  PubMed  Google Scholar 

  20. Banks AS, Davis SM, Bates SH, Myers Jr MG. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem. 2000;275(19):14563–72.

    Article  CAS  PubMed  Google Scholar 

  21. Munzberg H, Bjornholm M, Bates SH, Myers Jr MG. Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci. 2005;62(6):642–52.

    Article  CAS  PubMed  Google Scholar 

  22. Munzberg H, Huo L, Nillni EA, Hollenberg AN, Bjorbaek C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology. 2003;144(5):2121–31.

    Article  CAS  PubMed  Google Scholar 

  23. Vaisse C, Halaas JL, Horvath CM, Darnell Jr JE, Stoffel M, Friedman JM. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet. 1996;14(1):95–7.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenblum CI, Tota M, Cully D, Smith T, Collum R, Qureshi S, et al. Functional STAT 1 and 3 signaling by the leptin receptor (OB-R); reduced expression of the rat fatty leptin receptor in transfected cells. Endocrinology. 1996;137(11):5178–81.

    CAS  PubMed  Google Scholar 

  25. Huo L, Munzberg H, Nillni EA, Bjorbaek C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic trh gene expression by leptin. Endocrinology. 2004;145(5):2516–23.

    Article  CAS  PubMed  Google Scholar 

  26. Bates SH, Dundon TA, Seifert M, Carlson M, Maratos-Flier E, Myers Jr MG. LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Diabetes. 2004;53(12):3067–73.

    Article  CAS  PubMed  Google Scholar 

  27. Munzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology. 2004;145(11):4880–9.

    Article  PubMed  Google Scholar 

  28. Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell. 1998;1(4):619–25.

    Article  CAS  PubMed  Google Scholar 

  29. Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS. The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem. 1999;274(42):30059–65.

    Article  CAS  PubMed  Google Scholar 

  30. Bjorbak C, Lavery HJ, Bates SH, Olson RK, Davis SM, Flier JS, et al. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem. 2000;275(51):40649–57.

    Article  CAS  PubMed  Google Scholar 

  31. Howard JK, Flier JS. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab. 2006;17(9):365–71.

    Article  CAS  PubMed  Google Scholar 

  32. Kievit P, Howard JK, Badman MK, Balthasar N, Coppari R, Mori H, et al. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells. Cell Metab. 2006;4(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  33. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12(8):917–24.

    Article  CAS  PubMed  Google Scholar 

  34. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell. 2002;2(4):489–95.

    Article  CAS  PubMed  Google Scholar 

  35. White CL, Whittington A, Barnes MJ, Wang Z, Bray GA, Morrison CD. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms. Am J Physiol Endocrinol Metab. 2009;296(2):E291–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med. 2004;10(7):734–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ishida-Takahashi R, Rosario F, Gong Y, Kopp K, Stancheva Z, Chen X, et al. Phosphorylation of Jak2 on Ser(523) inhibits Jak2-dependent leptin receptor signaling. Mol Cell Biol. 2006;26(11):4063–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Argetsinger LS, Stuckey JA, Robertson SA, Koleva RI, Cline JM, Marto JA, et al. Tyrosines 868, 966, and 972 in the kinase domain of JAK2 are autophosphorylated and required for maximal JAK2 kinase activity. Mol Endocrinol. 2010;24(5):1062–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kloek C, Haq AK, Dunn SL, Lavery HJ, Banks AS, Myers Jr MG. Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem. 2002;277(44):41547–55.

    Article  CAS  PubMed  Google Scholar 

  40. Myers MG, Cowley MA, Munzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70:537–56.

    Article  CAS  PubMed  Google Scholar 

  41. Scarpace PJ, Zhang Y. Leptin resistance: a prediposing factor for diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R493–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Harris RB, Zhou J, Redmann Jr SM, Smagin GN, Smith SR, Rodgers E, et al. A leptin dose-response study in obese (ob/ob) and lean (+/?) mice. Endocrinology. 1998;139(1):8–19.

    Article  CAS  PubMed  Google Scholar 

  43. Faouzi M, Leshan R, Bjornholm M, Hennessey T, Jones J, Munzberg H. Differential accessibility of circulating leptin to individual hypothalamic sites. Endocrinology. 2007;148(11):5414–23.

    Article  CAS  PubMed  Google Scholar 

  44. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387(6636):903–8.

    Article  CAS  PubMed  Google Scholar 

  45. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;282(16):1568–75.

    Article  CAS  PubMed  Google Scholar 

  46. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 2007;5(3):181–94.

    Article  CAS  PubMed  Google Scholar 

  47. Bouret SG, Gorski JN, Patterson CM, Chen S, Levin BE, Simerly RB. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab. 2008;7(2):179–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science. 2004;304(5667):108–10.

    Article  CAS  PubMed  Google Scholar 

  49. Parekh PI, Petro AE, Tiller JM, Feinglos MN, Surwit RS. Reversal of diet-induced obesity and diabetes in C57BL/6J mice. Metabolism. 1998;47(9):1089–96.

    Article  CAS  PubMed  Google Scholar 

  50. Levin BE, Dunn-Meynell AA, Banks WA. Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset. Am J Physiol Regul Integr Comp Physiol. 2004;286(1):R143–50.

    Article  CAS  PubMed  Google Scholar 

  51. Patterson CM, Bouret SG, Dunn-Meynell AA, Levin BE. Three weeks of postweaning exercise in DIO rats produces prolonged increases in central leptin sensitivity and signaling. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R537–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004;428(6982):569–74.

    Article  CAS  PubMed  Google Scholar 

  53. Borges BC, Rorato R, Avraham Y, da Silva LE, Castro M, Vorobiav L, et al. Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. Am J Physiol Endocrinol Metab. 2011;300(5):E858–69.

    Article  CAS  PubMed  Google Scholar 

  54. Borges BC, Rorato R, Uchoa ET, Marangon P, da Silva GS, de Paula FJ, et al. High-fat diet induces site-specific unresponsiveness to LPS-stimulated STAT3 activation in the hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2014;306(1):R34–44.

    Article  CAS  Google Scholar 

  55. Munzberg H. Differential leptin access into the brain—a hierarchical organization of hypothalamic leptin target sites? Physiol Behav. 2008;94(5):664–9.

    Article  CAS  PubMed  Google Scholar 

  56. Sahu A. Resistance to the satiety action of leptin following chronic central leptin infusion is associated with the development of leptin resistance in neuropeptide Y neurones. J Neuroendocrinol. 2002;14(10):796–804.

    Article  CAS  PubMed  Google Scholar 

  57. Scarpace PJ, Matheny M, Zhang Y, Tumer N, Frase CD, Shek EW, et al. Central leptin gene delivery evokes persistent leptin signal transduction in young and aged-obese rats but physiological responses become attenuated over time in aged-obese rats. Neuropharmacology. 2002;42(4):548–61.

    Article  CAS  PubMed  Google Scholar 

  58. Scarpace PJ, Matheny M, Zhang Y, Shek EW, Prima V, Zolotukhin S, et al. Leptin-induced leptin resistance reveals separate roles for the anorexic and thermogenic responses in weight maintenance. Endocrinology. 2002;143(8):3026–35.

    Article  CAS  PubMed  Google Scholar 

  59. Martin RL, Perez E, He YJ, Dawson Jr R, Millard WJ. Leptin resistance is associated with hypothalamic leptin receptor mRNA and protein downregulation. Metabolism. 2000;49(11):1479–84.

    Article  CAS  PubMed  Google Scholar 

  60. Qiu J, Ogus S, Lu R, Chehab FF. Transgenic mice overexpressing leptin accumulate adipose mass at an older, but not younger, age. Endocrinology. 2001;142(1):348–58.

    CAS  PubMed  Google Scholar 

  61. Knight ZA, Hannan KS, Greenberg ML, Friedman JM. Hyperleptinemia is required for the development of leptin resistance. PLoS One. 2010;5(6):e11376.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Hosoi T, Okuma Y, Kawagishi T, Qi X, Matsuda T, Nomura Y. Bacterial endotoxin induces STAT3 activation in the mouse brain. Brain Res. 2004;1023(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  63. Thaler JP, Schwartz MW. Minireview: inflammation and obesity pathogenesis: the hypothalamus heats up. Endocrinology. 2010;151(9):4109–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Mark AL. Selective leptin resistance revisited. Am J Physiol Regul Integr Comp Physiol. 2013;305(6):R566–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Rahmouni K, Morgan DA, Morgan GM, Mark AL, Haynes WG. Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes. 2005;54(7):2012–8.

    Article  CAS  PubMed  Google Scholar 

  66. Shaver SW, Pang JJ, Wainman DS, Wall KM, Gross PM. Morphology and function of capillary networks in subregions of the rat tuber cinereum. Cell Tissue Res. 1992;267(3):437–48.

    Article  CAS  PubMed  Google Scholar 

  67. Bolborea M, Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013;36(2):91–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B. Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol. 2013;521(15):3389–405.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, et al. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol. 2005;247:89–164.

    Article  CAS  PubMed  Google Scholar 

  70. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 2013;17(4):607–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014;19(2):293–301.

    Article  CAS  PubMed  Google Scholar 

  73. Rousseau K, Atcha Z, Cagampang FR, Le RP, Stirland JA, Ivanov TR, et al. Photoperiodic regulation of leptin resistance in the seasonally breeding Siberian hamster (Phodopus sungorus). Endocrinology. 2002;143(8):3083–95.

    Article  CAS  PubMed  Google Scholar 

  74. Heldmaier G, Klingenspor M, Werneyer M, Lampi BJ, Brooks SP, Storey KB. Metabolic adjustments during daily torpor in the Djungarian hamster. Am J Physiol. 1999;276(5 Pt 1):E896–906.

    CAS  PubMed  Google Scholar 

  75. Klingenspor M, Niggemann H, Heldmaier G. Modulation of leptin sensitivity by short photoperiod acclimation in the Djungarian hamster, Phodopus sungorus. J Comp Physiol B. 2000;170(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  76. Tups A, Ellis C, Moar KM, Logie TJ, Adam CL, Mercer JG, et al. Photoperiodic regulation of leptin sensitivity in the Siberian hamster, Phodopus sungorus, is reflected in arcuate nucleus SOCS-3 (suppressor of cytokine signaling) gene expression. Endocrinology. 2004;145(3):1185–93.

    Article  CAS  PubMed  Google Scholar 

  77. Tups A, Barrett P, Ross AW, Morgan PJ, Klingenspor M, Mercer JG. The suppressor of cytokine signalling 3, SOCS3, may be one critical modulator of seasonal body weight changes in the Siberian hamster, Phodopus sungorus. J Neuroendocrinol. 2006;18(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  78. Tups A, Stohr S, Helwig M, Barrett P, Krol E, Schachtner J, et al. Seasonal leptin resistance is associated with impaired signalling via JAK2-STAT3 but not ERK, possibly mediated by reduced hypothalamic GRB2 protein. J Comp Physiol B. 2012;182(4):553–67.

    Article  CAS  PubMed  Google Scholar 

  79. Ladyman SR, Grattan DR. Region-specific reduction in leptin-induced phosphorylation of signal transducer and activator of transcription-3 (STAT3) in the rat hypothalamus is associated with leptin resistance during pregnancy. Endocrinology. 2004;145(8):3704–11.

    Article  CAS  PubMed  Google Scholar 

  80. Shirley B. The food intake of rats during pregnancy and lactation. Lab Anim Sci. 1984;34(2):169–72.

    CAS  PubMed  Google Scholar 

  81. Sagawa N, Yura S, Itoh H, Kakui K, Takemura M, Nuamah MA, et al. Possible role of placental leptin in pregnancy: a review. Endocrine. 2002;19(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  82. Garcia MD, Casanueva FF, Dieguez C, Senaris RM. Gestational profile of leptin messenger ribonucleic acid (mRNA) content in the placenta and adipose tissue in the rat, and regulation of the mRNA levels of the leptin receptor subtypes in the hypothalamus during pregnancy and lactation. Biol Reprod. 2000;62(3):698–703.

    Article  CAS  PubMed  Google Scholar 

  83. Grattan DR, Ladyman SR, Augustine RA. Hormonal induction of leptin resistance during pregnancy. Physiol Behav. 2007;91(4):366–74.

    Article  CAS  PubMed  Google Scholar 

  84. Phillipps HR, Ladyman SR, Grattan DR. Maintained expression of genes associated with metabolism in the ventromedial hypothalamic nucleus despite development of leptin resistance during pregnancy in the rat. Physiol Rep. 2013;1(6):e00162.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Seeber RM, Smith JT, Waddell BJ. Plasma leptin-binding activity and hypothalamic leptin receptor expression during pregnancy and lactation in the rat. Biol Reprod. 2002;66(6):1762–7.

    Article  CAS  PubMed  Google Scholar 

  86. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.

    Article  CAS  PubMed  Google Scholar 

  87. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.

    Article  CAS  PubMed  Google Scholar 

  88. Ozcan U, Ozcan L, Yilmaz E, Duvel K, Sahin M, Manning BD, et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell. 2008;29(5):541–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457–61.

    Article  PubMed  Google Scholar 

  90. Scheuner D, Vander MD, Song B, Flamez D, Creemers JW, Tsukamoto K, et al. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat Med. 2005;11(7):757–64.

    Article  CAS  PubMed  Google Scholar 

  91. Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Münzberg Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Münzberg, H., Heymsfield, S.B. (2015). Leptin, Obesity, and Leptin Resistance. In: Dagogo-Jack, MD, S. (eds) Leptin. Springer, Cham. https://doi.org/10.1007/978-3-319-09915-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09915-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09914-9

  • Online ISBN: 978-3-319-09915-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics