Skip to main content

Representations of the General Linear Lie Superalgebra in the BGG Category \(\mathcal{O}\)

  • Chapter
  • First Online:
Developments and Retrospectives in Lie Theory

Part of the book series: Developments in Mathematics ((DEVM,volume 38))

Abstract

This is a survey of some recent developments in the highest weight repesentation theory of the general linear Lie superalgebra \(\mathfrak{g}\mathfrak{l}_{n\vert m}(\mathbb{C})\). The main focus is on the analog of the Kazhdan–Lusztig conjecture as formulated by the author in 2002, which was finally proved in 2011 by Cheng, Lam and Wang. Recently another proof has been obtained by the author joint with Losev and Webster, by a method which leads moreover to the construction of a Koszul-graded lift of category \(\mathcal{O}\) for this Lie superalgebra.

Research supported in part by NSF grant no. DMS-1161094.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We follow the convention of adding a dot to all q-analogs to distinguish them from their classical counterparts.

References

  1. E. Backelin, Representation theory of the category \(\mathcal{O}\) in Whittaker categories, Internat. Math. Res. Notices 4 (1997), 153–172.

    Google Scholar 

  2. H. Bao and W. Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs; arxiv:1310.0103.

    Google Scholar 

  3. A. Beilinson and J. Bernstein, Localisation de \(\mathfrak{g}\)-modules, C. R. Acad. Sci. Paris Ser. I Math. 292 (1981), 15–18.

    Google Scholar 

  4. A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473–527.

    Google Scholar 

  5. A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Advances Math. 64 (1987), 118–175.

    Google Scholar 

  6. J. Bernstein, Trace in categories, in: Operator Algebras, Unitary Representations and Invariant Theory, eds. A. Connes, M. Duflo, A. Joseph and R. Rentschler, pp. 417–432, Birkhäuser, 1990.

    Google Scholar 

  7. J. Bernstein, I. M. Gelfand and S. I. Gelfand, Structure of representations generated by vectors of highest weight, Func. Anal. Appl. 5 (1971), 1–9.

    Google Scholar 

  8. J. Brown, J. Brundan and S. Goodwin, Principal W-algebras for GL(m | n), Alg. Numb. Theory 7 (2013), 1849–1882.

    Google Scholar 

  9. J. Brown, J. Brundan and S. Goodwin, Whittaker coinvariants for GL(m | n), in preparation.

    Google Scholar 

  10. J. Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \(\mathfrak{g}\mathfrak{l}(m\vert n)\), J. Amer. Math. Soc. 16 (2003), 185–231.

    Google Scholar 

  11. J. Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \(\mathfrak{q}(n)\), Advances Math. 182 (2004), 28–77.

    Google Scholar 

  12. J. Brundan, Tilting modules for Lie superalgebras, Comm. Algebra 32 (2004), 2251–2268.

    Google Scholar 

  13. J. Brundan, http://pages.uoregon.edu/brundan/papers/supero.gap .

  14. J. Brundan and A. Kleshchev, Schur-Weyl duality for higher levels, Selecta Math. 14 (2008), 1–57.

    Google Scholar 

  15. J. Brundan, I. Losev and B. Webster, Tensor product categorifications and the super Kazhdan-Lusztig conjecture; arxiv:1310.0349.

    Google Scholar 

  16. J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. 14 (2012), 373–419.

    Google Scholar 

  17. S.-J. Cheng and N. Lam, Irreducible characters of the general linear superalgebra and super duality, Commun. Math. Phys. 298 (2010), 645–672.

    Google Scholar 

  18. S.-J. Cheng, N. Lam and W. Wang, Brundan-Kazhdan-Lusztig conjecture for general linear Lie superalgebras; arxiv:1203.0092.

    Google Scholar 

  19. S.-J. Cheng, V. Mazorchuk and W. Wang, Equivalence of blocks for the general linear Lie superalgebra, Lett. Math. Phys. 103 (2013), 1313–1327.

    Google Scholar 

  20. S.-J. Cheng and W. Wang, Brundan-Kazhdan-Lusztig and super duality conjectures, Publ. RIMS 44 (2008), 1219–1272.

    Google Scholar 

  21. S.-J. Cheng and W. Wang, Dualities and Representations of Lie Superalgebras, Graduate Studies in Mathematics, Vol. 144, AMS, 2012.

    Google Scholar 

  22. S.-J. Cheng, W. Wang and R.B. Zhang, Super duality and Kazhdan-Lusztig polynomials, Trans. Amer. Math. Soc. 360 (2008), 5883–5924.

    Google Scholar 

  23. J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and \(\mathfrak{s}\mathfrak{l}_{2}\)-categorification, Ann. of Math. 167 (2008), 245–298.

    Google Scholar 

  24. K. Coulembier and V. Mazorchuk, Primitive ideals, twisting functors and star actions for classical Lie superalgebras; arXiv:1401.3231.

    Google Scholar 

  25. M. Ehrig and C. Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality; arXiv:1310.1972.

    Google Scholar 

  26. M. Gorelik, The Kac construction of the center of \(U(\mathfrak{g})\) for Lie superalgebras, J. Nonlinear Math. Phys. 11 (2004), 325–349.

    Google Scholar 

  27. J. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category \(\mathcal{O}\), Graduate Studies in Mathematics, Vol. 94, AMS, 2008.

    Google Scholar 

  28. A. Joseph, Sur la classification des idéaux primitifs dans l’algèbre enveloppante de \(\mathfrak{s}\mathfrak{l}(n + 1, \mathbb{C})\), C. R. Acad. Sci. Paris 287 (1978), A303–A306.

    Google Scholar 

  29. J. van der Jeugt and R.-B. Zhang, Characters and composition factor multiplicities for the Lie superalgebra \(\mathfrak{g}\mathfrak{l}(m\vert n)\), Lett. Math. Phys. 47 (1999), 49–61.

    Google Scholar 

  30. V. Kac, Characters of typical representations of classical Lie superalgebras, Commun. in Algebra 5 (1977), 889–897.

    Google Scholar 

  31. V. Kac, Representations of classical Lie superalgebras, in: “Differential geometrical methods in mathematical physics II”, Lecture Notes in Math. no. 676, pp. 597–626, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  32. B. Kostant, On Whittaker modules and representation theory, Invent. Math. 48 (1978), 101–184.

    Google Scholar 

  33. A. Lascoux and M.-P. Schützenberger, Polynômes de Kazhdan et Lusztig pour les Grassmanniennes, Astérisque 87–88 (1981), 249–266.

    Google Scholar 

  34. E. Letzter, A bijection of primitive spectra for classical Lie superalgebras of type I, J. London Math. Soc. 53 (1996), 39–49.

    Google Scholar 

  35. I. Losev, Dimensions of irreducible modules over W-algebras and Goldie ranks; arxiv:1209.1083. To appear in Invent. Math.

    Google Scholar 

  36. I. Losev and B. Webster, On uniqueness of tensor products of irreducible categorifications; arxiv:1303.4617.

    Google Scholar 

  37. G. Lusztig, Introduction to Quantum Groups, Birkhäuser, 1993.

    Google Scholar 

  38. I. Musson, A classication of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math. 91 (1992), 252–268.

    Google Scholar 

  39. I. Musson, Lie Superalgebras and Enveloping Algebras, Graduate Studies in Mathematics, Vol. 131, AMS, 2012.

    Google Scholar 

  40. I. Musson, The Jantzen filtration and sum formula for basic classical Lie superalgebras, in preparation.

    Google Scholar 

  41. I. Musson and V. Serganova, Combinatorics of character formulas for the Lie superalgebra \(\mathfrak{g}\mathfrak{l}(m,n)\), Transform. Groups 16 (2011), 555–578.

    Google Scholar 

  42. R. Rouquier, 2-Kac-Moody algebras (2008); arXiv:0812.5023.

    Google Scholar 

  43. V. Serganova, Kazhdan-Lusztig polynomials for the Lie superalgebra GL(m | n), Adv. Sov. Math. 16 (1993), 151–165.

    Google Scholar 

  44. A. Sergeev, Tensor algebra of the identity representation as a module over the Lie superalgebras GL(n, m) and Q(n), Math. USSR Sbornik 51 (1985), 419–427.

    Google Scholar 

  45. W. Soergel, Kategorie \(\mathcal{O}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), 421–445.

    Google Scholar 

  46. C. Stroppel, Category \(\mathcal{O}\): quivers and endomorphisms of projectives, Represent. Theory 7 (2003), 322–345.

    Google Scholar 

  47. Y. Su and R.-B. Zhang, Character and dimension formulae for general linear superalgebra, Advances Math. 211 (2007), 1–33.

    Google Scholar 

  48. Y. M. Zou, Categories of finite dimensional weight modules over type I classical Lie superalgebras, J. Algebra 180 (1996), 459–482.

    Google Scholar 

Download references

Acknowledgements

Special thanks go to Catharina Stroppel for several discussions which influenced this exposition. I also thank Geoff Mason, Ivan Penkov and Joe Wolf for providing me the opportunity to write a survey article of this nature. In fact I gave a talk on exactly this topic at the Seminar “Lie Groups, Lie Algebras and their Representations” at Riverside in November 2002, when the super Kazhdan–Lusztig conjecture was newborn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Brundan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brundan, J. (2014). Representations of the General Linear Lie Superalgebra in the BGG Category \(\mathcal{O}\) . In: Mason, G., Penkov, I., Wolf, J. (eds) Developments and Retrospectives in Lie Theory. Developments in Mathematics, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-09804-3_3

Download citation

Publish with us

Policies and ethics