Skip to main content

Characterization of Synthetic Jet Resonant Cavities

  • Conference paper
  • First Online:
Flinovia - Flow Induced Noise and Vibration Issues and Aspects

Abstract

The acoustic properties of piezo-electric driven resonant cavities usually employed to generate the so-called synthetic jets are analytically and numerically investigated in order to characterize the performances of such devices. It is shown that the actuator behaves as a two-coupled oscillators system and the dimensionless form of the governing equations allows one to identify various particular operating conditions. The theoretical predictions are validated through experimental tests carried out on devices having different mechanical and geometrical characteristics, designed in order to achieve an increasing coupling strength. Practical design implementations are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Glezer, M. Amitay, Synthetic jets. Annu. Rev. Fluid Mech. 34, 503–529 (2002). doi:10.1146/annurev.fluid.34.090501.094913

    Article  MathSciNet  Google Scholar 

  2. L.N. Cattafesta III, M. Sheplak, Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247–272 (2011). doi:10.1146/annurev-fluid-122109-160634

    Article  Google Scholar 

  3. L. Mongibello, G. Rocco, G. Coppola, L. de Luca, Numerical investigation of two adjacent synthetic jets for flow control, in 2nd European Conference for Aero-Space Sciences (EUCASS), Brussels, CD proceedings, paper 02-06-08

    Google Scholar 

  4. G. Monaco, L. Mongibello, L. de Luca, Impingement heat transfer by means of synthetic jets, in Proceedings of ASME-ATI-UIT 2010 Conference on Thermal and Environmental Issues in Energy Systems, Edizioni ETS, PISA, vol. II, Sorrento, 16–19 May 2010, pp. 1413–1417. ISBN 978-884672659-9

    Google Scholar 

  5. L. de Luca, M. Girfoglio, G. Coppola, Modeling and experimental validation of the frequency response of synthetic jet actuators. AIAA J. 52(8), 1733–1748 (2014). doi:10.2514/1.J052674

  6. S.A.N. Prasad, Two-port electroacoustic model of piezoelectric composite circular plate, M.S. thesis, Department of Aerospace Engineering, Mechanics, and Engineering Sciences, University of Florida, Gainesville, 2002, pp. 1–166

    Google Scholar 

  7. S.A.N. Prasad, Q. Gallas, S. Horowitz, B. Homeijer, B.V. Sankar, L.N. Cattafesta, M. Sheplak, Analytical electroacoustic model of a piezoelectric composite circular plate. AIAA J. 44(10), 2311–2318 (2006). doi:10.2514/1.19855

    Article  Google Scholar 

  8. Q. Gallas, R. Holman, T. Nishida, B. Carroll, M. Sheplak, L. Cattafesta, Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA J. 41(2), 240–247 (2003). doi:10.2514/2.1936

    Article  Google Scholar 

  9. R.N. Sharma, Fluid dynamics based analytical model for synthetic jet actuation. AIAA J. 45(8), 1841–1847 (2007). doi:10.2514/1.25427

    Article  Google Scholar 

  10. M. Chaudhari, G. Verma, B. Puranik, A. Agrawal, Frequency response of a synthetic jet cavity. Exp. Thermal Fluid Sci. 33, 439–448 (2009). doi:10.1016/j.expthermflusci.2008.10.008

    Article  Google Scholar 

  11. G. Krishnan, K. Mohseni, Axisymmetric synthetic jets: an experimental and theoretical examination. AIAA J. 47(10), 2273–2283 (2009). doi:10.2514/1.42967

    Article  Google Scholar 

  12. C. Seeley, Y. Utturkar, M. Arik, T. Icoz, Fluid-structure interaction model for low-frequency synthetic jets. AIAA J. 49(2), 316–323 (2011). doi:10.2514/1.53408

  13. T. Persoons, General reduced-order model to design and operate synthetic jet Actuators. AIAA J. 50(4), 916–927 (2012). doi:10.2514/1.J051381

    Article  Google Scholar 

  14. B.L. Smith, A. Glezer, The formation and evolution of synthetic jets. Phys. Fluids 10(9), 2281–2297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. B.L. Smith, G.W. Swift, A comparison between synthetic jets and continuous jets. Exp. Fluids 34(4), 467–472 (2003). doi:10.1007/800348-002-0577-6

    Article  Google Scholar 

  16. L.D. Gomes, W.J. Crowther, N.J. Wood, Towards a practical piezoceramic diaphragm based synthetic jet actuator for high subsonic applications—effect of chamber and orifice depth on actuator peak velocity, in 3rd AIAA Flow Control Conference, 5–8 June 2006, San Francisco, AIAA paper 2006–2859

    Google Scholar 

Download references

Acknowledgments

This work has been funded by Compagnia di S. Paolo and Polo delle Scienze e delle Tecnologie of Universita’ degli Studi di Napoli Federico II, within the F.A.R.O. projects 2009 and 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi de Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de Luca, L., Girfoglio, M., Chiatto, M., Coppola, G. (2015). Characterization of Synthetic Jet Resonant Cavities. In: Ciappi, E., De Rosa, S., Franco, F., Guyader, JL., Hambric, S. (eds) Flinovia - Flow Induced Noise and Vibration Issues and Aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-09713-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09713-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09712-1

  • Online ISBN: 978-3-319-09713-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics