Skip to main content

Patrolling by Robots Equipped with Visibility

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8576))

Abstract

We study the problem of mobile robots with distinct visibility ranges patrolling a curve. Assume a set of k mobile robots (patrolmen) a 1, a 2, ⋯ , a k walking along a unit-length curve in any of the two directions, not exceeding their maximal speeds. Every robot a i has a range of visibility r i , representing the distance from its current position at which the robot can see in each direction along the curve. The goal of the patrolling problem is to find the perpetual movement of the robots minimizing the maximal time when a point of the curve remains unseen by any robot.

We give the optimal patrolling algorithms for the case of close curve environment (known as the boundary patrolling problem in the robotics literature) and open curve (fence patrolling), when all robots have the same maximal speed. We briefly discuss the case of distinct speeds, showing that the boundary patrolling problem for robots with distinct visibility ranges is essentially different than the case of point visibility robots. We also give the optimal algorithm for fence patrolling by two robots with distinct speeds and visibility ranges.

For the case when the environment in which the robots operate is a general graph, we show that the patrolling problem for robots with distinct visibility ranges is NP-hard, while it is known that the same problem for point-visibility robots has been known to have a polynomial-time solution.

This work was partially supported by NSERC grants. D. Pajak was supported by LaBRI project ”mobilité junior” and LIRCO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, N.: On events in multi-robot patrol in adversarial environments. In: AAMAS, pp. 591–598 (2010)

    Google Scholar 

  2. Agmon, N., Fok, C.-L., Emaliah, Y., Stone, P., Julien, C., Vishwanath, S.: On coordination in practical multi-robot patrol. In: ICRA, pp. 650–656 (2012)

    Google Scholar 

  3. Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T., Corruble, V., Chevaleyre, Y.: Recent advances on multi-agent patrolling. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 474–483. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Amigoni, F., Basilico, N., Gatti, N.: Finding the optimal strategies for robotic patrolling with adversaries in topologically-represented environments. In: ICRA, pp. 819–824 (2009)

    Google Scholar 

  5. Chen, K., Dumitrescu, A., Ghosh, A.: On fence patrolling by mobile agents. In: CCCG (2013)

    Google Scholar 

  6. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT, pp. 302–308 (2004)

    Google Scholar 

  7. Collins, A., Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Martin, R., Ponce, O.M.: Optimal patrolling of fragmented boundaries. In: SPAA, pp. 241–250 (2013)

    Google Scholar 

  8. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Pajak, D.: Optimal patrolling by mobile agents in arbitrary continuous graphs (in preparation, 2014)

    Google Scholar 

  10. Elor, Y., Bruckstein, A.M.: Autonomous multi-agent cycle based patrolling. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 119–130. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    Google Scholar 

  12. Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robotics and Autonomous Systems 56(12), 1102–1114 (2008)

    Article  Google Scholar 

  13. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 598–608. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: An empirical analysis of alternative architectures. In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 155–170. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Pasqualetti, F., Durham, J.W., Bullo, F.: Cooperative patrolling via weighted tours: Performance analysis and distributed algorithms. IEEE Transactions on Robotics 28(5), 1181–1188 (2012)

    Article  Google Scholar 

  16. Pasqualetti, F., Franchi, A., Bullo, F.: On cooperative patrolling: Optimal trajectories, complexity analysis, and approximation algorithms. IEEE Transactions on Robotics 28(3), 592–606 (2012)

    Article  Google Scholar 

  17. Portugal, D., Rocha, R.: A survey on multi-robot patrolling algorithms. In: Camarinha-Matos, L.M. (ed.) DoCEIS 2011. IFIP AICT, vol. 349, pp. 139–146. Springer, Heidelberg (2011)

    Google Scholar 

  18. Portugal, D., Rocha, R.P.: Multi-robot patrolling algorithms: examining performance and scalability. Advanced Robotics 27(5), 325–336 (2013)

    Article  Google Scholar 

  19. Smith, S.L., Schwager, M., Rus, D.: Persistent robotic tasks: Monitoring and sweeping in changing environments. IEEE Transactions on Robotics 28(2), 410–426 (2012)

    Article  Google Scholar 

  20. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Czyzowicz, J., Kranakis, E., Pajak, D., Taleb, N. (2014). Patrolling by Robots Equipped with Visibility. In: Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2014. Lecture Notes in Computer Science, vol 8576. Springer, Cham. https://doi.org/10.1007/978-3-319-09620-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09620-9_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09619-3

  • Online ISBN: 978-3-319-09620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics