Skip to main content

Deconstructing Multi-objective Evolutionary Algorithms: An Iterative Analysis on the Permutation Flow-Shop Problem

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8426))

Included in the following conference series:

Abstract

Many studies in the literature have applied multi-objective evolutionary algorithms (MOEAs) to multi-objective combinatorial optimization problems. Few of them analyze the actual contribution of the basic algorithmic components of MOEAs. These components include the underlying EA structure, the fitness and diversity operators, and their policy for maintaining the population. In this paper, we compare seven MOEAs from the literature on three bi-objective and one tri-objective variants of the permutation flowshop problem. The overall best and worst performing MOEAs are then used for an iterative analysis, where each of the main components of these algorithms is analyzed to determine their contribution to the algorithms’ performance. Results confirm some previous knowledge on MOEAs, but also provide new insights. Concretely, some components only work well when simultaneously used. Furthermore, a new best-performing algorithm was discovered for one of the problem variants by replacing the diversity component of the best performing algorithm (NSGA-II) with the diversity component from PAES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  2. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race algorithm: sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, Ch., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  4. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic generation of multi-objective ACO algorithms for the bi-objective knapsack. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 37–48. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Deconstructing multi-objective evolutionary algorithms: An iterative analysis on the permutation flowshop: Supplementary material (2013). http://iridia.ulb.ac.be/supp/IridiaSupp2013-010/

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

    Article  Google Scholar 

  7. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP\(+\)PLS algorithm for bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fawcett, C., Hoos, H.H.: Analysing differences between algorithm configurations through ablation. In: Proceedings of MIC 2013, the 10th Metaheuristics International Conference, pp. 123–132 (2013)

    Google Scholar 

  9. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Forrest, S. (ed.) ICGA, pp. 416–423. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  10. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, p. 13. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Knowles, J.D., Corne, D.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  12. Liefooghe, A., Jourdan, L., Talbi, E.G.: A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO. Eur. J. Oper. Res. 209(2), 104–112 (2011)

    Article  MathSciNet  Google Scholar 

  13. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Technical report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

    Google Scholar 

  14. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

    Article  Google Scholar 

  15. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS J. Comput. 20(3), 451–471 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstette, J.J. (ed.) ICGA-85, pp. 93–100. Lawrence Erlbaum Associates, Hillsdale (1985)

    Google Scholar 

  17. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  18. Taillard, É.D.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)

    Article  MATH  Google Scholar 

  19. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control. CIMNE, Barcelona, Spain, pp. 95–100 (2002)

    Google Scholar 

  21. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto evolutionary algorithm. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  22. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to the results presented in this paper has received funding from the Meta-X ARC project, the COMEX project within the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office, and the FRFC project “Méthodes de recherche hybrides pour la résolution de problèmes complexes”. Leonardo C. T. Bezerra, Manuel López-Ibáñez and Thomas Stützle acknowledge support from the Belgian F.R.S.-FNRS, of which they are a FRIA doctoral fellow, a postdoctoral researcher and a senior research associate, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo C. T. Bezerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bezerra, L.C.T., López-Ibáñez, M., Stützle, T. (2014). Deconstructing Multi-objective Evolutionary Algorithms: An Iterative Analysis on the Permutation Flow-Shop Problem. In: Pardalos, P., Resende, M., Vogiatzis, C., Walteros, J. (eds) Learning and Intelligent Optimization. LION 2014. Lecture Notes in Computer Science(), vol 8426. Springer, Cham. https://doi.org/10.1007/978-3-319-09584-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09584-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09583-7

  • Online ISBN: 978-3-319-09584-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics