Skip to main content

Future Directions and Alternate Systems for Robotic Surgery

  • Chapter
  • First Online:
Essentials of Robotic Surgery

Abstract

Surgical robotics, or more accurately, computer-assisted tele-surgery, has two main purposes: first, to increase human performance beyond limitation of a person’s inherent physical abilities and second, to perform a surgical procedure at a remote site [1]. As a concept, tele-surgery originated with a 1972 NASA proposal. The initial vision was to provide medical care for orbiting astronauts from a terrestrial base by introducing an electromechanical system between the surgeon and the patient [2]. In the 1980s and 1990s, minimally invasive surgical techniques were developed that allowed the performance of precise surgical tasks through a few, small, incisions using specially developed surgical instruments. Since the dawn of surgical robotics, with the rapid development of computers and a dramatic increase in computational power came the application technology to the execution of surgical procedures. This culminated with the vision of remote tele-operation of surgical robots in the battlefield and the initial funding necessary to develop the current generation of surgical robots [3].

Disclosure: Myriam J. Curet, MD, is Senior Vice President and Chief Medical Officer at Intuitive Surgical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lendvay TS, Hannaford B, Satava RM. Future of robotic surgery. Cancer J. 2013;19(2):109–19.

    Article  PubMed  Google Scholar 

  2. Camarillo DB, Krummel TM, Salisbury JK. Robotic technology in surgery: past, present, and future. Am J Surg. 2004;188(4A Suppl):2S–15.

    Article  PubMed  Google Scholar 

  3. Marohn MR, Hanly EJ. Twenty-first century surgery using twenty-first century technology: surgical robotics. Curr Surg. 2004;61(5):466–73.

    Article  PubMed  Google Scholar 

  4. van der Meijden OAJ, Schijven MP. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc. 2009;23(6):1180–90.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bach-y-Rita P, Kercel SW. Sensory substitution and the human–machine interface. Trends Cogn Sci. 2003;7(12):541–6.

    Article  PubMed  Google Scholar 

  6. Kitagawa M, Dokko D, Okamura AM, Yuh DD. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg. 2005;129(1):151–8.

    Article  PubMed  Google Scholar 

  7. Reiley CE, Akinbiyi T, Burschka D, Chang DC, Okamura AM, Yuh DD. Effects of visual force feedback on robot-assisted surgical task performance. J Thorac Cardiovasc Surg. 2008;135(1):196–202.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee S-L, Lerotic M, Vitiello V, Giannarou S, Kwok K-W, Visentini-Scarzanella M, et al. From medical images to minimally invasive intervention: computer assistance for robotic surgery. Comput Med Imaging Graph. 2010;34(1):33–45.

    Article  PubMed  Google Scholar 

  9. Walter AJ. Surgical education for the twenty-first century: beyond the apprentice model. Obstet Gynecol Clin North Am. 2006;33(2):233–6. vii.

    Article  PubMed  Google Scholar 

  10. Moorthy K, Munz Y, Sarker SK, Darzi A. Objective assessment of technical skills in surgery. BMJ Clin Res. 2003;327(7422):1032–7.

    Article  Google Scholar 

  11. Choy I, Fecso A, Kwong J, Jackson T, Okrainec A. Remote evaluation of laparoscopic performance using the global operative assessment of laparoscopic skills. Surg Endosc. 2012;27(2):378–83.

    Article  PubMed  Google Scholar 

  12. Abboudi H, Khan MS, Aboumarzouk O, Guru KA, Challacombe B, Dasgupta P, et al. Current status of validation for robotic surgery simulators – a systematic review. BJU Int. 2013;111(2):194–205.

    Article  PubMed  Google Scholar 

  13. Lin HC, Shafran I, Yuh D, Hager GD. Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg. 2006;11(5):220–30.

    Article  PubMed  Google Scholar 

  14. Lentz GM, Mandel LS, Lee D, Gardella C, Melville J, Goff BA. Testing surgical skills of obstetric and gynecologic residents in a bench laboratory setting: validity and reliability. Ymob. 2001;184(7):1462–8.

    CAS  Google Scholar 

  15. Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73(6):1288–92.

    Article  PubMed  Google Scholar 

  16. Hung AJ, Zehnder P, Patil MB, Cai J, Ng CK, Aron M, et al. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186(3):1019–24.

    Article  PubMed  Google Scholar 

  17. Hung AJ, Patil MB, Zehnder P, Cai J, Ng CK, Aron M, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. 2012;187(2):630–7.

    Article  PubMed  Google Scholar 

  18. Schreuder HWR, Wolswijk R, Zweemer RP, Schijven MP, Verheijen RHM. Training and learning robotic surgery, time for a more structured approach: a systematic review. BJOG. 2012;119(2):137–49.

    Article  PubMed  CAS  Google Scholar 

  19. http://www.robotictraining.org. Accessed 1 Jan 14.

  20. Kahol K, Satava R, Ferrara J, Smith ML. The effect of short term pre-trial practice on surgical proficiency in simulated environments: a randomized trial of ‘pre-operative warm-up” effect. J Am Coll Surg. 2008;208:255–68.

    Article  PubMed  Google Scholar 

  21. Guseila LM, Saranathan A, Jenison EL, Gil KM, Elias JJ. Training to maintain surgical skills during periods of robotic surgery inactivity. Int J Med Robot. 2014;10(2):237–43.

    Article  PubMed  Google Scholar 

  22. Forest C, Delingette H, Ayache N. Cutting simulation of manifold volumetric meshes. In Medical Image Computing and Computer-Assisted Intervention (MICCAI’02), Lecture notes in computer science (LNCS), Tokyo, Japan, vol 2488. 2002. p. 235–84

    Google Scholar 

  23. Forest C, Delingette H, Ayache N. Removing tetrahedra from a manifold mesh. In Computer Animation (CA’02). Geneva: IEEE Computer Society; 2002. p. 225–9.

    Google Scholar 

  24. Vayssiere C, Forest C, Comas O. A virtual reality system based on patient imaging data for hands-on simulation and automatic evaluation of ultrasound examination and amniocentesis. Am J Obstet Gynecol. 2006;195 Suppl 1:S171.

    Article  Google Scholar 

  25. Soler L, Marescaux J. Patient-specific surgical simulation. World J Surg. 2008;32(2):208–12.

    Article  PubMed  Google Scholar 

  26. Sun LW, Van Meer F, Schmid J, Bailly Y, Thakre AA, Yeung CK. Advanced da Vinci Surgical System simulator for surgeon training and operation planning. Int J Med Robot. 2007;3(3):245–51.

    Article  PubMed  CAS  Google Scholar 

  27. Woelk JL, Casiano ER, Weaver AL, Gostout BS, Trabuco EC, Gebhart JB. The learning curve of robotic hysterectomy. Obstet Gynecol. 2013;121(1):87–95.

    PubMed  Google Scholar 

  28. Augestad KM, Bellika JG, Budrionis A, Chomutare T, Lindsetmo RO, Patel H, et al. Surgical telementoring in knowledge translation–clinical outcomes and educational benefits: a comprehensive review. Surg Innov. 2013;20(3):273–81.

    Article  PubMed  Google Scholar 

  29. Challacombe B, Wheatstone S. Telementoring and telerobotics in urological surgery. Curr Urol Rep. 2010;11(1):22–8.

    Article  PubMed  Google Scholar 

  30. Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235:300–1.

    Google Scholar 

  31. Anvaria M, McKinley C, Stein H. Establishment of the world’s first telerobotic remote surgical service: for provision of advanced laparoscopic surgery in a rural community. Ann Surg. 2005;241:460–4.

    Article  Google Scholar 

  32. Nguan CY, Morady R, Wang C, Harrison D, Browning D, Rayman R, et al. Robotic pyeloplasty using internet protocol and satellite network based telesurgery. Int J Med Robot. 2008;4:10–4.

    Article  PubMed  CAS  Google Scholar 

  33. Rayman R, Croome K, Galbraith N, McClure R, Morady R, Peterson S, et al. Robotic telesurgery: a real world comparison of ground and satellite-based Internet performance. Int J Med Robot. 2007;3:111–6.

    Article  PubMed  CAS  Google Scholar 

  34. Perez M, Quiaios F, Andrivon P, Husson D, Dufaut M, Felblinger J, et al. Paradigms and experimental set-up for the determination of the acceptable delay in telesurgery. Conf Proc IEEE Eng Med Biol Soc. 2007;1:453–6.

    Google Scholar 

  35. Anvari M, Broderick T, Stein H, Chapman T, Ghodoussi M, Birch DW, et al. The impact of latency on surgical precision and task completion during robotic-assisted remote telepresence surgery. Comput Aided Surg. 2005;10(2):93–9.

    Article  PubMed  Google Scholar 

  36. Marcus H, Nandi D, Darzi A, Yang G-Z. Surgical robotics through a keyhole: from today's translational barriers to tomorrow’s “disappearing” robots. IEEE Trans Biomed Eng. 2013;60(3):674–81.

    Article  PubMed  Google Scholar 

  37. Vitiello V, Lee S-L, Cundy TP, Yang G-Z. Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng. 2013;6:111–26.

    Article  PubMed  Google Scholar 

  38. http://www.titanmedicalinc.com/product. Accessed 1 Jan 2014.

  39. Ding J, Goldman RE, Xu K, Allen PK, Fowler DL, Simaan N. Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery. IEEE ASME Trans Mechatron. 2013; 18(5):1612–24.

    Google Scholar 

  40. http://www.medrobotics.com/technology.html. Accessed 1 Jan 2014.

  41. Ota T, Degani A, Schwartzman D, Zubiate B, McGarvey J, Choset H, et al. A highly articulated robotic surgical system for minimally invasive surgery. Annals Thoracic Surg. 2009;87(4):1253–6.

    Article  Google Scholar 

  42. Rivera-Serrano CM, Johnson P, Zubiate B, Kuenzler R, Choset H, Zenati M, et al. A transoral highly flexible robot: novel technology and application. Laryngoscope. 2012;122(5):1067–71.

    Article  PubMed  Google Scholar 

  43. Hagn U, Konietschke R, Tobergte A, Nickl M, Jörg S, Kübler B, et al. DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg. 2010;5(2):183–93.

    Article  PubMed  Google Scholar 

  44. Konietschke R, Hagn U, Nickl M, Jorg S, Tobergte A, Passig G, et al. The DLR MiroSurge-a robotic system for surgery. 2009 IEEE International Conference on Robotics and Automation; Kobe International Conference Center; Kobe Japan, May 12–17, 2009.

    Google Scholar 

  45. Tiwari MM, Reynoso JF, Lehman AC, Tsang AW, Farritor SM, Oleynikov D. In vivo miniature robots for natural orifice surgery: state of the art and future perspectives. World J Gastrointest Surg. 2010;2(6):217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shah BC, Buettner SL, Lehman AC, Farritor SM, Oleynikov D. Miniature in vivo robotics and novel robotic surgical platforms. Urol Clin N Am. 2009;36(2):251–63.

    Article  Google Scholar 

  47. Tan GY, Goel RK, Kaouk JH, Tewari AK. Technological advances in robotic-assisted laparoscopic surgery. Urol Clin N Am. 2009;36(2):237–49.

    Article  Google Scholar 

  48. Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery. 2008;62(2):286–92.

    Article  PubMed  Google Scholar 

  49. Sutherland GR, Wolfsberger S, Lama S, Zareinia K. The evolution of neuroArm. Neurosurgery. 2013;72 Suppl 1:27–32.

    Article  PubMed  Google Scholar 

  50. Ohta T, Kuroiwa T. Freely movable armrest for microneurosurgery: technical note. Neurosurgery. 2000;46(5):1259–61.

    Article  PubMed  CAS  Google Scholar 

  51. Goto T, Hongo K, Yako T, Hara Y, Okamoto J, Toyoda K, et al. The concept and feasibility of EXPERT: intelligent armrest using robotics technology. Neurosurgery. 2013;72 Suppl 1:39–42.

    Article  PubMed  Google Scholar 

  52. Haber G-P, Crouzet S, Kamoi K, Berger A, Aron M, Goel R, et al. Robotic NOTES (Natural Orifice Translumenal Endoscopic Surgery) in reconstructive urology: initial laboratory experience. Urology. 2008;71(6):996–1000.

    Article  PubMed  Google Scholar 

  53. Petroni G, Niccolini M, Menciassi A, Dario P, Cuschieri A. A novel intracorporeal assembling robotic system for single-port laparoscopic surgery. Surg Endosc. 2013;27(2):665–70.

    Article  PubMed  Google Scholar 

  54. Petroni G, Niccolini M, Caccavaro S, Quaglia C, Menciassi A, Schostek S, et al. A novel robotic system for single-port laparoscopic surgery: preliminary experience. Surg Endosc. 2013;27(6):1932–7.

    Article  PubMed  CAS  Google Scholar 

  55. Low SC, Tang SW, Thant ZM, Phee L, Ho KY, Chung SC. Master–slave robotic system for therapeutic gastrointestinal endoscopic procedures. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3850–3.

    Article  PubMed  CAS  Google Scholar 

  56. Phee SJ, Ho KY, Lomanto D, Low SC, Huynh VA, Kencana AP, et al. Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot (MASTER). Surg Endosc. 2010;24(9):2293–8.

    Article  PubMed  CAS  Google Scholar 

  57. Wang Z, Phee SJ, Lomanto D, Goel R, Rebala P, Sun ZL, et al. Endoscopic submucosal dissection of gastric lesions by using a master and slave transluminal endoscopic robot: an animal survival study. Endoscopy. 2012;44(7):690–4.

    Article  PubMed  CAS  Google Scholar 

  58. Ho K-Y, Phee SJ, Shabbir A, Low SC, Huynh VA, Kencana AP, et al. Endoscopic submucosal dissection of gastric lesions by using a Master and Slave Transluminal Endoscopic Robot (MASTER). Gastrointest Endosc. 2010;72(3):593–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dante Roulette M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roulette, G.D., Curet, M.J. (2015). Future Directions and Alternate Systems for Robotic Surgery. In: Kroh, M., Chalikonda, S. (eds) Essentials of Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-09564-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09564-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09563-9

  • Online ISBN: 978-3-319-09564-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics