Skip to main content

Parkinson’s Disease Dementia

  • Chapter
  • First Online:
Neuropsychiatric Symptoms of Movement Disorders

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder; along with its well-known motor symptoms, it leads to cognitive impairment, behavioral symptoms, and autonomic dysfunction. Dementia is highly prevalent in PD (PD-D), especially in the advanced stages of the disease. The cognitive profile of dementia is characterized by predominant deficits in executive, visuospatial functions and attention. Apathy, depressive symptoms, visual hallucinations, and delusions are common behavioral symptoms. The main biochemical deficit is cholinergic, and cholinesterase inhibitors are the first choice treatment for PD-D. This chapter summarizes the epidemiology, clinical features, genetic background, neuropathology, neurochemistry, diagnosis, and management of PD-D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muslimovic D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005;65:1239–45. doi:10.1212/01.wnl.0000180516.69442.95.

    PubMed  Google Scholar 

  2. Aarsland D, Bronnick K, Williams-Gray C, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology. 2010;75:1062–9. doi:10.1212/WNL.0b013e3181f39d0e.

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Williams-Gray CH, Evans JR, Goris A, et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain. 2009;132:2958–69. doi:10.1093/brain/awp245.

    PubMed  Google Scholar 

  4. Williams-Gray CH, Mason SL, Evans JR, et al. The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. J Neurol Neurosurg Psychiatr. 2013;84:1258–64. doi:10.1136/jnnp-2013-305277.

    PubMed  Google Scholar 

  5. Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord. 2005;20:1255–63. doi:10.1002/mds.20527.

    PubMed  Google Scholar 

  6. Marder K, Tang MX, Cote L, et al. The frequency and associated risk factors for dementia in patients with Parkinson’s disease. Arch Neurol. 1995;52:695–701.

    PubMed  CAS  Google Scholar 

  7. De Lau LML, Schipper CMA, Hofman A, et al. Prognosis of Parkinson disease: risk of dementia and mortality: the Rotterdam study. Arch Neurol. 2005;62:1265–9. doi:10.1001/archneur.62.8.1265.

    PubMed  Google Scholar 

  8. Hely MA, Morris JGL, Reid WGJ, Trafficante R. Sydney multicenter study of Parkinson’s disease: non-L-dopa-responsive problems dominate at 15 years. Mov Disord. 2005;20:190–9. doi:10.1002/mds.20324.

    PubMed  Google Scholar 

  9. Hely MA, Reid WGJ, Adena MA, et al. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23:837–44. doi:10.1002/mds.21956.

    PubMed  Google Scholar 

  10. Aarsland D, Andersen K, Larsen JP, et al. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol. 2003;60:387–92.

    PubMed  Google Scholar 

  11. Buter TC, van den Hout A, Matthews FE, et al. Dementia and survival in Parkinson disease: a 12-year population study. Neurology. 2008;70:1017–22. doi:10.1212/01.wnl.0000306632.43729.24.

    PubMed  CAS  Google Scholar 

  12. Savica R, Grossardt BR, Bower JH, et al. Incidence of dementia with Lewy bodies and Parkinson disease dementia. JAMA Neurol. 2013;70:1396–402. doi:10.1001/jamaneurol.2013.3579.

    PubMed  Google Scholar 

  13. Levy G, Schupf N, Tang M-X, et al. Combined effect of age and severity on the risk of dementia in Parkinson’s disease. Ann Neurol. 2002;51:722–9. doi:10.1002/ana.10219.

    PubMed  Google Scholar 

  14. Pedersen KF, Larsen JP, Tysnes O-B, Alves G. Prognosis of mild cognitive impairment in early Parkinson disease: the Norwegian ParkWest study. JAMA Neurol. 2013;70:580–6. doi:10.1001/jamaneurol.2013.2110.

    PubMed  Google Scholar 

  15. Woods SP, Tröster AI. Prodromal frontal/executive dysfunction predicts incident dementia in Parkinson’s disease. J Int Neuropsychol Soc. 2003;9:17–24.

    PubMed  Google Scholar 

  16. Alves G, Larsen JP, Emre M, et al. Changes in motor subtype and risk for incident dementia in Parkinson’s disease. Mov Disord. 2006;21:1123–30. doi:10.1002/mds.20897.

    PubMed  Google Scholar 

  17. Sollinger AB, Goldstein FC, Lah JJ, et al. Mild cognitive impairment in Parkinson’s disease: subtypes and motor characteristics. Parkinsonism Relat Disord. 2010;16:177–80. doi:10.1016/j.parkreldis.2009.11.002.

    PubMed  PubMed Central  Google Scholar 

  18. Marion M-H, Qurashi M, Marshall G, Foster O. Is REM sleep behaviour disorder (RBD) a risk factor of dementia in idiopathic Parkinson’s disease? J Neurol. 2008;255:192–6. doi:10.1007/s00415-008-0629-9.

    PubMed  Google Scholar 

  19. Boot BP, Boeve BF, Roberts RO, et al. Probable rapid eye movement sleep behavior disorder increases risk for mild cognitive impairment and Parkinson disease: a population-based study. Ann Neurol. 2012;71:49–56. doi:10.1002/ana.22655.

    PubMed  PubMed Central  Google Scholar 

  20. Siderowf A, Xie SX, Hurtig H, et al. CSF amyloid {beta} 1-42 predicts cognitive decline in Parkinson disease. Neurology. 2010;75:1055–61. doi:10.1212/WNL.0b013e3181f39a78.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Yarnall AJ, Breen DP, Duncan GW, et al. Characterizing mild cognitive impairment in incident Parkinson disease: The ICICLE-PD study. Neurology. 2014;82:308–16. doi:10.1212/WNL.0000000000000066.

    PubMed  PubMed Central  Google Scholar 

  22. Lee S-J, Kim J-S, Yoo J-Y, et al. Influence of white matter hyperintensities on the cognition of patients with Parkinson disease. Alzheimer Dis Assoc Disord. 2010;24:227–33. doi:10.1097/WAD.0b013e3181d71a13.

    PubMed  Google Scholar 

  23. Kandiah N, Mak E, Ng A, et al. Cerebral white matter hyperintensity in Parkinson’s disease: a major risk factor for mild cognitive impairment. Parkinsonism Relat Disord. 2013;19:680–3. doi:10.1016/j.parkreldis.2013.03.008.

    PubMed  Google Scholar 

  24. Ebmeier KP, Calder SA, Crawford JR, et al. Mortality and causes of death in idiopathic Parkinson’s disease: results from the Aberdeen whole population study. Scott Med J. 1990;35:173–5.

    PubMed  CAS  Google Scholar 

  25. Levy G, Tang M-X, Cote LJ, et al. Do risk factors for Alzheimer’s disease predict dementia in Parkinson’s disease? An exploratory study. Mov Disord. 2002;17:250–7.

    PubMed  Google Scholar 

  26. Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder Society Task Force guidelines. Mov Disord. 2012;27:349–56. doi:10.1002/mds.24893.

    PubMed  PubMed Central  Google Scholar 

  27. Bronnick K, Ehrt U, Emre M, et al. Attentional deficits affect activities of daily living in dementia-associated with Parkinson’s disease. J Neurol Neurosurg Psychiatr. 2006;77:1136–42. doi:10.1136/jnnp.2006.093146.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Aarsland D, Litvan I, Salmon D, et al. Performance on the dementia rating scale in Parkinson’s disease with dementia and dementia with Lewy bodies: comparison with progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatr. 2003;74:1215–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Costa A, Monaco M, Zabberoni S, et al. Free and cued recall memory in Parkinson’s disease associated with amnestic mild cognitive impairment. PLoS One. 2014;9:e86233. doi:10.1371/journal.pone.0086233.

    PubMed  PubMed Central  Google Scholar 

  30. Brønnick K, Alves G, Aarsland D, et al. Verbal memory in drug-naive, newly diagnosed Parkinson’s disease. The retrieval deficit hypothesis revisited. Neuropsychology. 2011;25:114–24. doi:10.1037/a0020857.

    PubMed  Google Scholar 

  31. Weintraub D, Moberg PJ, Culbertson WC, et al. Evidence for impaired encoding and retrieval memory profiles in Parkinson disease. Cogn Behav Neurol. 2004;17:195–200.

    PubMed  Google Scholar 

  32. Aarsland D, Brønnick K, Ehrt U, et al. Neuropsychiatric symptoms in patients with Parkinson’s disease and dementia: frequency, profile and associated care giver stress. J Neurol Neurosurg Psychiatr. 2007;78:36–42. doi:10.1136/jnnp.2005.083113.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Fénelon G, Mahieux F, Huon R, Ziégler M. Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain. 2000;123(Pt 4):733–45.

    PubMed  Google Scholar 

  34. Pagonabarraga J, Llebaria G, García-Sánchez C, et al. A prospective study of delusional misidentification syndromes in Parkinson’s disease with dementia. Mov Disord. 2008;23:443–8. doi:10.1002/mds.21864.

    PubMed  Google Scholar 

  35. Galvin JE, Pollack J, Morris JC. Clinical phenotype of Parkinson disease dementia. Neurology. 2006;67:1605–11. doi:10.1212/01.wnl.0000242630.52203.8f.

    PubMed  Google Scholar 

  36. Burn DJ, Rowan EN, Minett T, et al. Extrapyramidal features in Parkinson’s disease with and without dementia and dementia with Lewy bodies: a cross-sectional comparative study. Mov Disord. 2003;18:884–9. doi:10.1002/mds.10455.

    PubMed  Google Scholar 

  37. Williams-Gray CH, Foltynie T, Brayne CEG, et al. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain. 2007;130:1787–98. doi:10.1093/brain/awm111.

    PubMed  CAS  Google Scholar 

  38. Allan LM, Ballard CG, Allen J, et al. Autonomic dysfunction in dementia. J Neurol Neurosurg Psychiatr. 2007;78:671–7. doi:10.1136/jnnp.2006.102343.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Boddy F, Rowan EN, Lett D, et al. Subjectively reported sleep quality and excessive daytime somnolence in Parkinson’s disease with and without dementia, dementia with Lewy bodies and Alzheimer’s disease. Int J Geriatr Psychiatry. 2007;22:529–35. doi:10.1002/gps.1709.

    PubMed  Google Scholar 

  40. Huang X, Chen PC, Poole C. APOE-[epsilon]2 allele associated with higher prevalence of sporadic Parkinson disease. Neurology. 2004;62:2198–202.

    PubMed  CAS  Google Scholar 

  41. Williams-Gray CH, Goris A, Saiki M, et al. Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson’s disease. J Neurol. 2009;256:493–8. doi:10.1007/s00415-009-0119-8.

    PubMed  CAS  Google Scholar 

  42. Tsuang D, Leverenz JB, Lopez OL, et al. APOE ε4 increases risk for dementia in pure synucleinopathies. JAMA Neurol. 2013;70:223–8. doi:10.1001/jamaneurol.2013.600.

    PubMed  PubMed Central  Google Scholar 

  43. Goris A, Williams-Gray CH, Clark GR, et al. Tau and alpha-synuclein in susceptibility to, and dementia in, Parkinson’s disease. Ann Neurol. 2007;62:145–53. doi:10.1002/ana.21192.

    PubMed  CAS  Google Scholar 

  44. Healy DG, Abou-Sleiman PM, Lees AJ, et al. Tau gene and Parkinson’s disease: a case-control study and meta-analysis. J Neurol Neurosurg Psychiatr. 2004;75:962–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Setó-Salvia N, Clarimón J, Pagonabarraga J, et al. Dementia risk in Parkinson disease: disentangling the role of MAPT haplotypes. Arch Neurol. 2011;68:359–64. doi:10.1001/archneurol.2011.17.

    PubMed  Google Scholar 

  46. Mata IF, Samii A, Schneer SH, et al. Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Arch Neurol. 2008;65:379–82. doi:10.1001/archneurol.2007.68.

    PubMed  PubMed Central  Google Scholar 

  47. Goker-Alpan O, Lopez G, Vithayathil J, et al. The spectrum of parkinsonian manifestations associated with glucocerebrosidase mutations. Arch Neurol. 2008;65:1353–7. doi:10.1001/archneur.65.10.1353.

    PubMed  PubMed Central  Google Scholar 

  48. Chahine LM, Qiang J, Ashbridge E, et al. Clinical and biochemical differences in patients having Parkinson disease with vs without GBA mutations. JAMA Neurol. 2013;70:852–8. doi:10.1001/jamaneurol.2013.1274.

    PubMed  PubMed Central  Google Scholar 

  49. Winder-Rhodes SE, Evans JR, Ban M, et al. Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain. 2013;136:392–9. doi:10.1093/brain/aws318.

    PubMed  Google Scholar 

  50. Sironi F, Trotta L, Antonini A, et al. Alpha-Synuclein multiplication analysis in Italian familial Parkinson disease. Parkinsonism Relat Disord. 2010;16:228–31. doi:10.1016/j.parkreldis.2009.09.008.

    PubMed  Google Scholar 

  51. Farrer M, Kachergus J, Forno L, et al. Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol. 2004;55:174–9. doi:10.1002/ana.10846.

    PubMed  CAS  Google Scholar 

  52. Kasten M, Kertelge L, Brüggemann N, et al. Nonmotor symptoms in genetic Parkinson disease. Arch Neurol. 2010;67:670–6. doi:10.1001/archneurol.67.6.670.

    PubMed  Google Scholar 

  53. Emre M. What causes mental dysfunction in Parkinson’s disease? Mov Disord. 2003;18 Suppl 6:S63–71. doi:10.1002/mds.10565.

    PubMed  Google Scholar 

  54. Pletnikova O, West N, Lee MK, et al. A beta deposition is associated with enhanced cortical alpha-synuclein lesions in Lewy body diseases. Neurobiol Aging. 2005;26:1183–92. doi:10.1016/j.neurobiolaging.2004.10.006.

    PubMed  CAS  Google Scholar 

  55. Parkkinen L, Pirttilä T, Alafuzoff I. Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathol. 2008;115:399–407. doi:10.1007/s00401-008-0346-6.

    PubMed  PubMed Central  Google Scholar 

  56. Irwin DJ, White MT, Toledo JB, et al. Neuropathologic substrates of Parkinson disease dementia. Ann Neurol. 2012;72:587–98. doi:10.1002/ana.23659.

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Compta Y, Parkkinen L, O’Sullivan SS, et al. Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain. 2011;134:1493–505. doi:10.1093/brain/awr031.

    PubMed  Google Scholar 

  58. Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    PubMed  Google Scholar 

  59. Ballard C, Ziabreva I, Perry R, et al. Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology. 2006;67:1931–4. doi:10.1212/01.wnl.0000249130.63615.cc.

    PubMed  CAS  Google Scholar 

  60. Halliday G, Hely M, Reid W, Morris J. The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol. 2008;115:409–15. doi:10.1007/s00401-008-0344-8.

    PubMed  Google Scholar 

  61. Mattila PM, Röyttä M, Lönnberg P, et al. Choline acetyltransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol. 2001;102:160–6.

    PubMed  CAS  Google Scholar 

  62. Tiraboschi P, Hansen LA, Alford M, et al. Cholinergic dysfunction in diseases with Lewy bodies. Neurology. 2000;54:407–11.

    PubMed  CAS  Google Scholar 

  63. Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci U S A. 1987;84:5976–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Kuhl DE, Minoshima S, Fessler JA, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol. 1996;40:399–410. doi:10.1002/ana.410400309.

    PubMed  CAS  Google Scholar 

  65. Bohnen NI, Kaufer DI, Ivanco LS, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol. 2003;60:1745–8. doi:10.1001/archneur.60.12.1745.

    PubMed  Google Scholar 

  66. Bohnen NI, Kaufer DI, Hendrickson R, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol. 2006;253:242–7. doi:10.1007/s00415-005-0971-0.

    PubMed  CAS  Google Scholar 

  67. Kulisevsky J. Role of dopamine in learning and memory: implications for the treatment of cognitive dysfunction in patients with Parkinson’s disease. Drugs Aging. 2000;16:365–79.

    PubMed  CAS  Google Scholar 

  68. Rinne JO, Portin R, Ruottinen H, et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Arch Neurol. 2000;57:470–5.

    PubMed  CAS  Google Scholar 

  69. Ito K, Nagano-Saito A, Kato T, et al. Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: a 6-[18F]fluoro-L-dopa PET study. Brain. 2002;125:1358–65.

    PubMed  Google Scholar 

  70. Scatton B, Javoy-Agid F, Rouquier L, et al. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res. 1983;275:321–8.

    PubMed  CAS  Google Scholar 

  71. Rinne JO, Rummukainen J, Paljärvi L, Rinne UK. Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra. Ann Neurol. 1989;26:47–50. doi:10.1002/ana.410260107.

    PubMed  CAS  Google Scholar 

  72. Klein JC, Eggers C, Kalbe E, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology. 2010;74:885–92. doi:10.1212/WNL.0b013e3181d55f61.

    PubMed  CAS  Google Scholar 

  73. Jellinger KA. Morphological substrates of mental dysfunction in Lewy body disease: an update. J Neural Transm Suppl. 2000;59:185–212.

    PubMed  CAS  Google Scholar 

  74. Jellinger KA. Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol. 1991;14:153–97.

    PubMed  CAS  Google Scholar 

  75. Apostolova LG, Beyer M, Green AE, et al. Hippocampal, caudate, and ventricular changes in Parkinson’s disease with and without dementia. Mov Disord. 2010;25:687–8. doi:10.1002/mds.22799.

    PubMed  PubMed Central  Google Scholar 

  76. Matsui H, Nishinaka K, Oda M, et al. Dementia in Parkinson’s disease: diffusion tensor imaging. Acta Neurol Scand. 2007;116:177–81. doi:10.1111/j.1600-0404.2007.00838.x.

    PubMed  CAS  Google Scholar 

  77. Wiltshire K, Concha L, Gee M, et al. Corpus callosum and cingulum tractography in Parkinson’s disease. Can J Neurol Sci. 2010;37:595–600.

    PubMed  Google Scholar 

  78. Seibert TM, Murphy EA, Kaestner EJ, Brewer JB. Interregional correlations in Parkinson disease and Parkinson-related dementia with resting functional MR imaging. Radiology. 2012;263:226–34. doi:10.1148/radiol.12111280.

    PubMed  PubMed Central  Google Scholar 

  79. Rektorova I, Krajcovicova L, Marecek R, Mikl M. Default mode network and extrastriate visual resting state network in patients with Parkinson’s disease dementia. Neurodegener Dis. 2012;10:232–7. doi:10.1159/000334765.

    PubMed  CAS  Google Scholar 

  80. Bissessur S, Tissingh G, Wolters EC, Scheltens P. rCBF SPECT in Parkinson’s disease patients with mental dysfunction. J Neural Transm Suppl. 1997;50:25–30.

    PubMed  CAS  Google Scholar 

  81. Hilker R, Thomas AV, Klein JC, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology. 2005;65:1716–22. doi:10.1212/01.wnl.0000191154.78131.f6.

    PubMed  CAS  Google Scholar 

  82. Maetzler W, Reimold M, Liepelt I, et al. [11C]PIB binding in Parkinson’s disease dementia. Neuroimage. 2008;39:1027–33. doi:10.1016/j.neuroimage.2007.09.072.

    PubMed  Google Scholar 

  83. Edison P, Rowe CC, Rinne JO, et al. Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatr. 2008;79:1331–8. doi:10.1136/jnnp.2007.127878.

    PubMed  CAS  Google Scholar 

  84. Gomperts SN, Rentz DM, Moran E, et al. Imaging amyloid deposition in Lewy body diseases. Neurology. 2008;71:903–10. doi:10.1212/01.wnl.0000326146.60732.d6.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Petrou M, Bohnen NI, Müller MLTM, et al. Aβ-amyloid deposition in patients with Parkinson disease at risk for development of dementia. Neurology. 2012;79:1161–7. doi:10.1212/WNL.0b013e3182698d4a.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–707. doi:10.1002/mds.21507; quiz 1837.

    PubMed  Google Scholar 

  87. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22:2314–24. doi:10.1002/mds.21844.

    PubMed  Google Scholar 

  88. Dalrymple-Alford JC, MacAskill MR, Nakas CT, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75:1717–25. doi:10.1212/WNL.0b013e3181fc29c9.

    PubMed  CAS  Google Scholar 

  89. Mahieux F, Boller F, Fermanian J, Guiallard D. Mini-Mental Parkinson: first validation study of a new bedside test constructed for Parkinson’s disease. Behav Neurology. 1995;8:15–22.

    CAS  Google Scholar 

  90. Kalbe E, Calabrese P, Kohn N, et al. Screening for cognitive deficits in Parkinson’s disease with the Parkinson neuropsychometric dementia assessment (PANDA) instrument. Parkinsonism Relat Disord. 2008;14:93–101. doi:10.1016/j.parkreldis.2007.06.008.

    PubMed  Google Scholar 

  91. Marinus J, Visser M, Verwey NA, et al. Assessment of cognition in Parkinson’s disease. Neurology. 2003;61:1222–8.

    PubMed  CAS  Google Scholar 

  92. Pagonabarraga J, Kulisevsky J, Llebaria G, et al. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord. 2008;23:998–1005. doi:10.1002/mds.22007.

    PubMed  Google Scholar 

  93. Cummings JL, Mega M, Gray K, et al. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44:2308–14.

    PubMed  CAS  Google Scholar 

  94. Nocera JR, Price C, Fernandez HH, et al. Tests of dorsolateral frontal function correlate with objective tests of postural stability in early to moderate stage Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:590–4. doi:10.1016/j.parkreldis.2010.08.008.

    PubMed  PubMed Central  Google Scholar 

  95. Yarnall A, Rochester L, Burn DJ. The interplay of cholinergic function, attention, and falls in Parkinson’s disease. Mov Disord. 2011;26:2496–503. doi:10.1002/mds.23932.

    PubMed  Google Scholar 

  96. Hindle JV, Petrelli A, Clare L, Kalbe E. Nonpharmacological enhancement of cognitive function in Parkinson’s disease: a systematic review. Mov Disord. 2013;28:1034–49. doi:10.1002/mds.25377.

    PubMed  Google Scholar 

  97. París AP, Saleta HG, de la Cruz Crespo Maraver M, et al. Blind randomized controlled study of the efficacy of cognitive training in Parkinson’s disease. Mov Disord. 2011;26:1251–8. doi:10.1002/mds.23688.

    PubMed  Google Scholar 

  98. Nombela C, Bustillo PJ, Castell PF, et al. Cognitive rehabilitation in Parkinson’s disease: evidence from neuroimaging. Front Neurol. 2011;2:82. doi:10.3389/fneur.2011.00082.

    PubMed  PubMed Central  Google Scholar 

  99. Sammer G, Reuter I, Hullmann K, et al. Training of executive functions in Parkinson’s disease. J Neurol Sci. 2006;248:115–9. doi:10.1016/j.jns.2006.05.028.

    PubMed  Google Scholar 

  100. Ridgel AL, Kim C-H, Fickes EJ, et al. Changes in executive function after acute bouts of passive cycling in Parkinson’s disease. J Aging Phys Act. 2011;19:87–98.

    PubMed  Google Scholar 

  101. Cruise KE, Bucks RS, Loftus AM, et al. Exercise and Parkinson’s: benefits for cognition and quality of life. Acta Neurol Scand. 2011;123:13–9. doi:10.1111/j.1600-0404.2010.01338.x.

    PubMed  CAS  Google Scholar 

  102. Emre M, Aarsland D, Albanese A, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med. 2004;351:2509–18. doi:10.1056/NEJMoa041470.

    PubMed  CAS  Google Scholar 

  103. Emre M, Poewe W, De Deyn PP, et al. Long-term safety of rivastigmine in Parkinson disease dementia: an open-label, randomized study. Clin Neuropharmacol. 2014;37:9–16. doi:10.1097/WNF.0000000000000010.

    PubMed  CAS  Google Scholar 

  104. Wesnes KA, McKeith I, Edgar C, et al. Benefits of rivastigmine on attention in dementia associated with Parkinson disease. Neurology. 2005;65:1654–6. doi:10.1212/01.wnl.0000184517.69816.e9.

    PubMed  CAS  Google Scholar 

  105. Burn D, Emre M, McKeith I, et al. Effects of rivastigmine in patients with and without visual hallucinations in dementia associated with Parkinson’s disease. Mov Disord. 2006;21:1899–907. doi:10.1002/mds.21077.

    PubMed  Google Scholar 

  106. Poewe W, Wolters E, Emre M, et al. Long-term benefits of rivastigmine in dementia associated with Parkinson’s disease: an active treatment extension study. Mov Disord. 2006;21:456–61. doi:10.1002/mds.20700.

    PubMed  Google Scholar 

  107. Oertel W, Poewe W, Wolters E, et al. Effects of rivastigmine on tremor and other motor symptoms in patients with Parkinson’s disease dementia: a retrospective analysis of a double-blind trial and an open-label extension. Drug Saf. 2008;31:79–94.

    PubMed  CAS  Google Scholar 

  108. Dubois B, Tolosa E, Katzenschlager R, et al. Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov Disord. 2012;27:1230–8. doi:10.1002/mds.25098.

    PubMed  CAS  Google Scholar 

  109. Rowan E, McKeith IG, Saxby BK, et al. Effects of donepezil on central processing speed and attentional measures in Parkinson’s disease with dementia and dementia with Lewy bodies. Dement Geriatr Cogn Disord. 2007;23:161–7. doi:10.1159/000098335.

    PubMed  CAS  Google Scholar 

  110. Aarsland D, Mosimann UP, McKeith IG. Role of cholinesterase inhibitors in Parkinson’s disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol. 2004;17:164–71. doi:10.1177/0891988704267463.

    PubMed  Google Scholar 

  111. Maidment I, Fox C, Boustani M. Cholinesterase inhibitors for Parkinson’s disease dementia. Cochrane Database Syst Rev. 2006;(1):CD004747. doi:10.1002/14651858.CD004747.pub2.

  112. Rolinski M, Fox C, Maidment I, McShane R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease. Cochrane Database Syst Rev. 2012;(3):CD006504. doi:10.1002/14651858.CD006504.pub2. CD006504.

    Google Scholar 

  113. Thomas AJ, Burn DJ, Rowan EN, et al. A comparison of the efficacy of donepezil in Parkinson’s disease with dementia and dementia with Lewy bodies. Int J Geriatr Psychiatry. 2005;20:938–44. doi:10.1002/gps.1381.

    PubMed  Google Scholar 

  114. Minett TSC, Thomas A, Wilkinson LM, et al. What happens when donepezil is suddenly withdrawn? An open label trial in dementia with Lewy bodies and Parkinson’s disease with dementia. Int J Geriatr Psychiatry. 2003;18:988–93. doi:10.1002/gps.995.

    PubMed  Google Scholar 

  115. Aarsland D, Ballard C, Walker Z, et al. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009;8:613–8. doi:10.1016/S1474-4422(09)70146-2.

    PubMed  CAS  Google Scholar 

  116. Emre M, Tsolaki M, Bonuccelli U, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9:969–77. doi:10.1016/S1474-4422(10)70194-0.

    PubMed  CAS  Google Scholar 

  117. Barker RA, Barrett J, Mason SL, Björklund A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 2013;12:84–91. doi:10.1016/S1474-4422(12)70295-8.

    PubMed  CAS  Google Scholar 

  118. Molloy SA, Rowan EN, O’Brien JT, et al. Effect of levodopa on cognitive function in Parkinson’s disease with and without dementia and dementia with Lewy bodies. J Neurol Neurosurg Psychiatr. 2006;77:1323–8. doi:10.1136/jnnp.2006.098079.

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Aarsland D, Larsen JP, Karlsen K, et al. Mental symptoms in Parkinson’s disease are important contributors to caregiver distress. Int J Geriatr Psychiatry. 1999;14:866–74.

    PubMed  CAS  Google Scholar 

  120. Fernandez HH, Okun MS, Rodriguez RL, et al. Quetiapine improves visual hallucinations in Parkinson disease but not through normalization of sleep architecture: results from a double-blind clinical-polysomnography study. Int J Neurosci. 2009;119:2196–205. doi:10.3109/00207450903222758.

    PubMed  CAS  Google Scholar 

  121. Morgante L, Epifanio A, Spina E, et al. Quetiapine and clozapine in parkinsonian patients with dopaminergic psychosis. Clin Neuropharmacol. 2004;27:153–6.

    PubMed  CAS  Google Scholar 

  122. Low-dose clozapine for the treatment of drug-induced psychosis in Parkinson’s disease. The Parkinson Study Group. N Engl J Med.1999;340:757–63. doi:10.1056/NEJM199903113401003.

  123. Clozapine in drug-induced psychosis in Parkinson’s disease. The French Clozapine Parkinson Study Group. Lancet. 1999;353:2041–2.

    Google Scholar 

  124. Coward DM, Imperato A, Urwyler S, White TG. Biochemical and behavioural properties of clozapine. Psychopharmacology (Berl). 1989;99(Suppl):S6–12.

    Google Scholar 

  125. Weintraub D, Morales KH, Moberg PJ, et al. Antidepressant studies in Parkinson’s disease: a review and meta-analysis. Mov Disord. 2005;20:1161–9. doi:10.1002/mds.20555.

    PubMed  PubMed Central  Google Scholar 

  126. Miyasaki JM, Shannon K, Voon V, et al. Practice Parameter: evaluation and treatment of depression, psychosis, and dementia in Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;66:996–1002. doi:10.1212/01.wnl.0000215428.46057.3d.

    PubMed  CAS  Google Scholar 

  127. Devos D, Dujardin K, Poirot I, et al. Comparison of desipramine and citalopram treatments for depression in Parkinson’s disease: a double-blind, randomized, placebo-controlled study. Mov Disord. 2008;23:850–7. doi:10.1002/mds.21966.

    PubMed  Google Scholar 

  128. Menza M, Dobkin RD, Marin H, et al. A controlled trial of antidepressants in patients with Parkinson disease and depression. Neurology. 2009;72:886–92. doi:10.1212/01.wnl.0000336340.89821.b3.

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Richard IH, McDermott MP, Kurlan R, et al. A randomized, double-blind, placebo-controlled trial of antidepressants in Parkinson disease. Neurology. 2012;78:1229–36. doi:10.1212/WNL.0b013e3182516244.

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Barone P, Poewe W, Albrecht S, et al. Pramipexole for the treatment of depressive symptoms in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9:573–80. doi:10.1016/S1474-4422(10)70106-X.

    PubMed  CAS  Google Scholar 

  131. Boeve BF, Silber MH, Ferman TJ, et al. Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord. 2001;16:622–30.

    PubMed  CAS  Google Scholar 

  132. Olson EJ, Boeve BF, Silber MH. Rapid eye movement sleep behaviour disorder: demographic, clinical and laboratory findings in 93 cases. Brain. 2000;123(Pt 2):331–9.

    PubMed  Google Scholar 

  133. Lapierre O, Montplaisir J. Polysomnographic features of REM sleep behavior disorder: development of a scoring method. Neurology. 1992;42:1371–4.

    PubMed  CAS  Google Scholar 

  134. Boeve BF, Silber MH, Ferman TJ. Melatonin for treatment of REM sleep behavior disorder in neurologic disorders: results in 14 patients. Sleep Med. 2003;4:281–4.

    PubMed  Google Scholar 

  135. Di Giacopo R, Fasano A, Quaranta D, et al. Rivastigmine as alternative treatment for refractory REM behavior disorder in Parkinson’s disease. Mov Disord. 2012;27:559–61. doi:10.1002/mds.24909.

    PubMed  Google Scholar 

  136. Adler CH, Caviness JN, Hentz JG, et al. Randomized trial of modafinil for treating subjective daytime sleepiness in patients with Parkinson’s disease. Mov Disord. 2003;18:287–93. doi:10.1002/mds.10390.

    PubMed  Google Scholar 

  137. Nieves AV, Lang AE. Treatment of excessive daytime sleepiness in patients with Parkinson’s disease with modafinil. Clin Neuropharmacol. 2002;25:111–4.

    PubMed  CAS  Google Scholar 

  138. Ondo WG, Fayle R, Atassi F, Jankovic J. Modafinil for daytime somnolence in Parkinson’s disease: double blind, placebo controlled parallel trial. J Neurol Neurosurg Psychiatr. 2005;76:1636–9. doi:10.1136/jnnp.2005.065870.

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Leroi I, Pantula H, McDonald K, Harbishettar V. Neuropsychiatric symptoms in Parkinson’s disease with mild cognitive impairment and dementia. Parkinsons Dis. 2012;2012:308097. doi:10.1155/2012/308097.

    PubMed  PubMed Central  Google Scholar 

  140. Chatterjee A, Fahn S. Methylphenidate treats apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 2002;14:461–2.

    PubMed  Google Scholar 

  141. Devos D, Moreau C, Maltête D, et al. Rivastigmine in apathetic but dementia and depression-free patients with Parkinson’s disease: a double-blind, placebo-controlled, randomised clinical trial. J Neurol Neurosurg Psychiatr. 2013. doi:10.1136/jnnp-2013-306439.

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Başar Bilgiç MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bilgiç, B., Hanağası, H.A., Emre, M. (2015). Parkinson’s Disease Dementia. In: Reichmann, H. (eds) Neuropsychiatric Symptoms of Movement Disorders. Neuropsychiatric Symptoms of Neurological Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-09537-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09537-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09536-3

  • Online ISBN: 978-3-319-09537-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics