Skip to main content

A GPU-Accelerated Adaptive Simultaneous Dynamic Range Compression and Local Contrast Enhancement Algorithm for Real-Time Color Image Enhancement

  • Chapter
  • First Online:
Color Image and Video Enhancement
  • 1456 Accesses

Abstract

Dynamic range compression is an important function used in modern digital video cameras and displays to improve visual quality of standard dynamic range color images. This chapter presents a real-time implementation of an adaptive contrast-enhancing image dynamic range compression algorithm on a graphics processing unit (GPU) for color image enhancement. To achieve this purpose, an image-dependent nonlinear intensity transfer function is first presented to produce a satisfactory dynamic-range compression result with less color artifacts. The proposed algorithm is then derived by combining the proposed nonlinear intensity transfer function with an existing simultaneous dynamic range compression and local-contrast enhancement (SDRCLCE) algorithm, which is a parallelizable method to compress image dynamic range while enhancing local contrast of output images. Finally, the proposed algorithm is implemented on the GPU by using NVIDIA Compute Unified Device Architecture (CUDA), achieving real-time performance in processing high-resolution color images. The proposed GPU-accelerated color image enhancement method had been implemented on a NVIDIA NVS 5200M GPU. Experimental results show that the proposed GPU implementation gains about 7 times acceleration, including the cost of memory copy between host and device, compared with a LUT-accelerated implementation on an Intel Core i7-3520M CPU for color images with size 1024 × 1024 pixels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Land, E.: Recent advances in Retinex theory. Vis. Res. 26(1), 7–21 (1986)

    Article  Google Scholar 

  2. Jobson, D., Rahman, Z., Woodell, G.: A multiscale Retinex for bridging the gap between color images and human observation of scenes. IEEE Trans. Image. Process 6(7), 965–976 (1997)

    Article  Google Scholar 

  3. Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE. Trans. Image. Process. 16(4), 1058–1072 (2007)

    Article  MathSciNet  Google Scholar 

  4. Choudhury, A., Medioni, G.: Perceptually motivated automatic color contrast enhancement based on color constancy estimation. EURASIP. J. Image. Video. Process. 2010(837237), 1–22 (2010)

    Article  Google Scholar 

  5. Chen, S.-H., Beghdadi, A.: Natural enhancement of color image. EURASIP. J. Image. Video. Process. 2010(175203), 1–19 (2010)

    Article  MATH  Google Scholar 

  6. Ferradans, S., Bertalmío, M., Provenzi, E., Caselles, V.: An analysis of visual adaptation and contrast perception for tone mapping. IEEE. Trans. Pattern. Anal. Mach. Intell. 33(10), 2002–2012 (2011)

    Article  Google Scholar 

  7. Kim, K., Bae, J., Kim, J.: Natural HDR image tone mapping based on retinex. IEEE. Trans. Consum. Electron. 57(4), 1807–1814 (2011)

    Article  MathSciNet  Google Scholar 

  8. Saponara, S., Fanucci, L., Marsi, S., Ramponi, G.: Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing. J. Real-Time. Image. Process. (2007). doi:10.1007/s11554-007-0027-z

    Google Scholar 

  9. Tao, L., Asari, V. K.: Adaptive and integrated neighborhood-dependent approach for nonlinear enhancement of color images. J. Electron. Imaging. 14(4) (2005). doi:043006-1-043006-14

    Google Scholar 

  10. Tao, L., Tompkins, R., Asari, V. K.: An illuminance-reflectance model for nonlinear enhancement of color images. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 159–166 (2005)

    Google Scholar 

  11. Monobe, Y., Yamashita, H., Kurosawa, T., Kotera, H.: Dynamic range compression preserving local image contrast for digital video camera. IEEE. Trans. Consum. Electron. 51(1), 1–10 (2005)

    Article  Google Scholar 

  12. Unaldi, N., Asari, V. K., Rahman, Z.: Fast and robust wavelet-based dynamic range compression with local contrast enhancement. Proceedings of SPIE 6978, pp. 697805-1-697805-12 (2008)

    Google Scholar 

  13. Tsai, C.-Y.: A fast dynamic range compression with local contrast preservation algorithm and its application to real-time video enhancement. IEEE. Trans. Multimed. 14(4) (Part 2), 1140–1152 (2012)

    Article  Google Scholar 

  14. Tsai, C.-Y., Chou, C.-H.: A novel simultaneous dynamic range compression and local contrast enhancement algorithm for digital video cameras. EURASIP J. Image. Video. Process. 2011(6), 1–19 (2011)

    Google Scholar 

  15. Reinhard, E., Kunkel, T., Marion, Y., Brouillat, J., Cozot, R., Bouatouch, K.: Image display algorithms for high and low dynamic range display devices. J. Soc. Inf. Disp. 15(12), 997–1014 (2007)

    Article  Google Scholar 

  16. Marsi, S., Impoco, G., Ukovich, A., Carrato, S., Ramponi, G.: Video enhancement and dynamic range control of HDR sequences for automotive applications. EURASIP J. Adv. Signal. Process. 2007(080971), 1–9 (2007)

    Google Scholar 

  17. Tsai, C.-Y., Huang, C.-H.: An adaptive dynamic range compression with local contrast enhancement algorithm for real-time color image enhancement. J. Real-Time. Image. Process. (2012). doi:10.1007/s11554-012-0299-9

    Google Scholar 

  18. NVIDIA’s CUDA Toolkit webpage: http://www.nvidia.com/content/cuda/cuda-toolkit.html

  19. NVIDIA performance primitives (NPP) webpage: https://developer.nvidia.com/npp

  20. NVIDIA’s NVS technical specs webpage: http://www.nvidia.com/object/nvs_techspecs.html

  21. Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P.: Image quality assessment: From error visibility to structural similarity. IEEE. Trans. Image. Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  22. Wang, Y.-W., Huang, W.-B.: A CUDA-enabled parallel algorithm for accelerating retinex. J. Real-Time. Image. Process. 9(3), 407–425 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council of Taiwan, ROC under grant NSC 103-2221-E-032-068 and 103-2632-E-032-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yi Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsai, CY., Huang, CH. (2015). A GPU-Accelerated Adaptive Simultaneous Dynamic Range Compression and Local Contrast Enhancement Algorithm for Real-Time Color Image Enhancement. In: Celebi, E., Lecca, M., Smolka, B. (eds) Color Image and Video Enhancement. Springer, Cham. https://doi.org/10.1007/978-3-319-09363-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09363-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09362-8

  • Online ISBN: 978-3-319-09363-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics