Skip to main content

On Fractal Complexity of Built and Natural Landscapes

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8580))

Included in the following conference series:

Abstract

In this study, some problematic points associated with the application of the box-counting method for the evaluation of the visual complexity of the chosen historic buildings and their surrounding environments are analyzed. The reliability of the results is measured in terms of the variation of the complexity level over different range of scales available in an image. Some rules for the choice of the box sizes used in the box counts are considered and tested in the case of classical fractals with the known theoretical fractal dimension. The proposed algorithm is applied to the evaluations of the fractal dimensions for the historic part of the city of Amasya and its surrounding environment. More accurate computations based on the traditional and new factual material show that there is a strong similarity between the fractal measures of the built and natural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Batty, M., Longley, P.: Fractal Cities: A Geometry of Form and Function. Academic Press, San Diego (1994)

    Google Scholar 

  2. Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. MIT Press, Cambridge (2005)

    Google Scholar 

  3. Bechhoefer, W., Bovill, C.: Fractal analysis of traditional housing in Amasya, Turkey. In: Changing Methodologies in the Field of Traditional Environment Research, pp. 1–21. University of California, Berkeley (1994)

    Google Scholar 

  4. Bisoi, A.K., Mishra, J.: On calculation of fractal dimension of images. Pattern Recognition Letters 2, 631–637 (2001)

    Article  Google Scholar 

  5. Bovill, C.: Fractal Geometry in Architecture and Design. Birkhauser, Boston (1996)

    Google Scholar 

  6. Buczkowski, S., Kyriacos, S., Nekka, F., Cartilier, L.: The modified box-counting method analysis of some characteristic parameters. Pattern Recognition 31, 411–418 (1998)

    Article  Google Scholar 

  7. Burkle-Elizondo, G., Valdez-Cepeda, R.D.: Fractal analysis of Mesoamerican pyramids. Nonlinear Dynamics, Psychology and Life Sciences 10, 105–122 (2006)

    Google Scholar 

  8. Calter, P.A.: Squaring the Circle: Geometry in Art and Architecture. Wiley, Chichester (2008)

    Google Scholar 

  9. Capo, D.: The fractal nature of the architectural orders. Nexus Network Journal 6, 30–40 (2004)

    Article  Google Scholar 

  10. Cardillo, A., Scellato, S., Latora, S., Porta, S.: Structural properties of planar graphs of urban street patterns. Physical Review E 73, 066107-1–066107-8 (2006)

    Google Scholar 

  11. Chen, S.S., Keller, J.M., Crownover, R.M.: On the calculation of fractal features from images. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 1087–1090 (1993)

    Article  Google Scholar 

  12. Cooper, J., Oskrochi, R.: Fractal analysis of street vistas: a potential tool for assessing levels of visual variety in everyday street scenes. Environment and Planning B: Planning and Design 35, 349–363 (2008)

    Article  Google Scholar 

  13. Cooper, J., Watkinson, D., Oskrochi, R.: Fractal analysis and perception of visual quality in everyday street vistas. Environment and Planning B: Planning and Design 37, 808–822 (2010)

    Article  Google Scholar 

  14. Da Silva, D., Boudon, F., Godin, C., Puech, O., Smith, C., Sinoquet, H.: A critical appraisal of the box counting method to assess the fractal dimension of tree crowns. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 751–760. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (2003)

    Google Scholar 

  16. Feng, J., Lin, W.-C., Chen, C.-T.: Fractional box-counting approach to fractal dimension estimation. In: Proceedings of ICPR 1996, pp. 854–858 (1996)

    Google Scholar 

  17. Foroutan-pour, K., Dutilleul, P., Smith, D.L.: Advances in the implementation of the box-counting method of fractal dimension. Applied Mathematics and Computation 105, 195–210 (1999)

    Article  MATH  Google Scholar 

  18. Frankhauser, P., Tannier, C.: Fractalyse (2012), http://www.fractalyse.org/en-home.html

  19. Hagerhall, C.M., Purcell, T., Taylor, R.: Fractal dimension of landscape silhouette outlines as a predictor of landscape preference. Journal of Environmental Psychology 24, 247–255 (2004)

    Article  Google Scholar 

  20. Hahn, A.J.: Mathematical Excursions to the World’s Great Buildings. Princeton University Press, Princeton (2012)

    Google Scholar 

  21. Heath, T., Smith, S.G., Lim, B.: Tall buildings and the urban skyline: the effect of visual complexity on preferences. Environment and Behavior 32, 541–556 (2000)

    Article  Google Scholar 

  22. Huang, Q., Lorch, J.R., Bubes, R.C.: Can the fractal dimension of images be measured? Pattern Recognition 27, 339–349 (1994)

    Article  Google Scholar 

  23. Jelinek, H.F., Fernandez, E.: Neurons and fractals: how reliable and useful are calculations of fractal dimensions? Journal of Neuroscience Methods 81, 9–18 (1998)

    Article  Google Scholar 

  24. Li, J., Du, Q., Sun, C.: An improved box-counting method for image fractal dimension estimation. Pattern Recognition 42, 2460–2469 (2009)

    Article  MATH  Google Scholar 

  25. Lorenz, W.E.: Fractals and fractal architecture. Vienna University of Technology, Vienna (2003)

    Google Scholar 

  26. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  27. Mandelbrot, B.: Fractals and the rebirth of iteration theory. In: Peitgen, H.-O., Richter, P.H. (eds.) The Beauty of Fractals: Images of Complex Dynamical Systems, pp. 151–160. Springer, Berlin (1986)

    Chapter  Google Scholar 

  28. Milosevic, N.T., Ristanovic, D.: Fractal and non-fractal properties of triadic Koch curve. Chaos, Solitons and Fractals 34, 1050–1059 (2007)

    Article  Google Scholar 

  29. Moisy, F.: Boxcount (2008), http://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount

  30. Ostwald, M.J.: Fractal architecture: late twentieth century connections between architecture and fractal geometry. Nexus Network Journal 3, 73–83 (2001)

    Article  Google Scholar 

  31. Ostwald, M.J.: The fractal analysis of architecture: calibrating the box-counting method using scaling coefficient and grid disposition variables. Environment and Planning B: Planning and Design 40, 644–663 (2013)

    Article  Google Scholar 

  32. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science Springer, New York (2004)

    Google Scholar 

  33. Perry, S.G., Reeves, R.W., Sim, J.C.: Landscape design and the language of nature. Landscape Review 12, 3–18 (2008)

    Google Scholar 

  34. Rodin, V., Rodina, E.: The fractal dimension of Tokyo’s streets. Fractals 8, 413–418 (2000)

    Article  MATH  Google Scholar 

  35. Stamps, A.E.: Fractals, skylines, nature and beauty. Landscape and Urban Planning 60, 163–184 (2002)

    Article  Google Scholar 

  36. Vaughan, J., Ostwald, M.J.: Using fractal analysis to compare the characteristic complexity of nature and architecture: re-examining the evidence. Architectural Science Review 53, 323–332 (2010)

    Article  Google Scholar 

  37. Zacharias, J.: Preferences for view corridors through the urban environment. Landscape and Urban Planning 43, 217–225 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bourchtein, A., Bourchtein, L., Naoumova, N. (2014). On Fractal Complexity of Built and Natural Landscapes. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8580. Springer, Cham. https://doi.org/10.1007/978-3-319-09129-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09129-7_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09128-0

  • Online ISBN: 978-3-319-09129-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics