Skip to main content

Pathophysiology of Vasovagal Syncope: Conclusive Remarks

  • Chapter
  • First Online:
Vasovagal Syncope

Abstract

The vasovagal reflex, underlying vasovagal syncope (VVS), is likely to be an effective defence mechanism both in animals and humans. Within the vasovagal reflex, the vaso-inhibitory component plays a major role accounting for the limited efficacy of pacemaker implant in preventing VVS relapse, even if asystole has been previously documented by internal loop recordings. An effective neural sympathetic control of arterial vasculature upon standing is obtained in humans by both a proper increase of the sympathetic bursts activity and a baroreceptor mediated sympathetic neural discharge rhythmicity at 0.1 Hz. Adenosine and B-type natriuretic peptides are promising markers to be used in typifying clinical forms of VVS, their aetiology and prognosis. Although vagal activity is usually thought to be protective for the heart and brain, an excessive vagal activity resulting from the combination of diving and emotional VV reflexes or from a prolonged and forced head-up position may be harmful for humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mosqueda-Garcia R, Furlan R, Tank J et al (2000) The elusive pathophysiology of neurally mediated syncope. Circulation 102:2898–2906

    Article  CAS  PubMed  Google Scholar 

  2. Oberg B, Thoren P (1972) Increased activity in left ventricular receptors during hemorrhage or occlusion of caval veins in the cat: a possible cause of the vaso-vagal reaction. Acta Physiol Scand 85:164–173

    Article  CAS  PubMed  Google Scholar 

  3. Gabrielsen GW, Smith EN (1985) Physiological responses associated with feigned death in the American opossum. Acta Physiol Scand 123:393–398

    Article  CAS  PubMed  Google Scholar 

  4. Bracha HS, Bracha AS, Williams AE et al (2005) The human fear-circuitry and fear-induced fainting in healthy individuals: the paleolithic-threat hypothesis. Clin Auton Res 15:238–241

    Article  PubMed  Google Scholar 

  5. Diehl RR (2005) Vasovagal syncope and Darwinian fitness. Clin Auton Res 15:126–129

    Article  PubMed  Google Scholar 

  6. Levi M (2005) Vasovagal fainting as an evolutionary remnant of the fight against hemorrhage. Clin Auton Res 15:69–70

    Article  PubMed  Google Scholar 

  7. Darwin C (1900) A posthumous essay on instinct. In: Romanes GJ (ed) Mental evolution in animals. Appleton, New York

    Google Scholar 

  8. Hoagland H (1928) On the mechanism of tonic immobility (“animal hypnosis”). J Gen Physiol 1:426–427

    Google Scholar 

  9. EL Sergeant AB (1975) Death feigning by ducks in response to predation by red foxes (Vulpes fulva). Am Midl Nat 94:108–119

    Article  Google Scholar 

  10. Alboni P, Alboni M, Bertorelle G (2008) The origin of vasovagal syncope: to protect the heart or to escape predation? Clin Auton Res 18:170–178

    Article  PubMed  Google Scholar 

  11. Lewis T (1932) Vasovagal syncope and the carotid sinus mechanism with comments on Gowers’ and Nothnagel’s syndrome. Br Med J I:873–876

    Article  Google Scholar 

  12. Brignole M, Menozzi C, Moya A et al (2012) Pacemaker therapy in patients with neurally mediated syncope and documented asystole: Third International Study on Syncope of Uncertain Etiology (ISSUE-3): a randomized trial. Circulation 125:2566–2571

    Article  PubMed  Google Scholar 

  13. Fucà G, Dinelli M, Suzzani P et al (2006) The venous system is the main determinant of hypotension in patients with vasovagal syncope. Europace 8:839–845

    Article  PubMed  Google Scholar 

  14. Verheyden BLJ, van Dijk N, Westerhof BE et al (2008) Steep fall in cardiac output is main determinant of hypotension during drug-free and nitroglycerine-induced orthostatic vasovagal syncope. Heart Rhythm 12:1695–1702

    Article  Google Scholar 

  15. Mosqueda-Garcia R, Furlan R, Fernandez-Violante R et al (1997) Sympathetic and baroreceptor reflex function in neurally mediated syncope evoked by tilt. J Clin Invest 99:2736–2744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jardine DL (2013) Vasovagal syncope new physiologic insights. In: Sheldon R (ed) Syncope. Elsevier, Philadelphia, pp 75–87

    Google Scholar 

  17. Vaddadi G, Esler MD, Dawood T et al (2010) Persistence of muscle sympathetic nerve activity during vasovagal syncope. Eur Heart J 31:2027–2033

    Article  PubMed  Google Scholar 

  18. Furlan R, Porta A, Costa F et al (2000) Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation 101:886–892

    Article  CAS  PubMed  Google Scholar 

  19. Rowell LB, Seals DR (1990) Sympathetic activity during graded central hypovolemia in hypoxemic humans. Am J Physiol 259:H1197–H1206

    CAS  PubMed  Google Scholar 

  20. Calkins H, Kadish A, Sousa J et al (1991) Comparison of responses to isoproterenol and epinephrine during head-up tilt in suspected vasodepressor syncope. Am J Cardiol 67:207–209

    Article  CAS  PubMed  Google Scholar 

  21. Ludbrook J, Rutter PC (1988) Effect of naloxone on haemodynamic responses to acute blood loss in unanaesthetized rabbits. J Physiol 400:1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Smith ML, CMaTM (1993) Naloxone does not prevent vasovagal syncope during simulated orthostasis in humans. J Auton Nerv Syst 45:1–9

    Article  CAS  PubMed  Google Scholar 

  23. Saadjian AY, Levy S, Franceschi F et al (2002) Role of endogenous adenosine as a modulator of syncope induced during tilt testing. Circulation 106:569–574

    Article  CAS  PubMed  Google Scholar 

  24. Shryock JC, Belardinelli L (1997) Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 79:2–10

    Article  CAS  PubMed  Google Scholar 

  25. Lerman BB, Belardinelli L (1991) Cardiac electrophysiology of adenosine. Basic and clinical concepts. Circulation 83:1499–1509

    Article  CAS  PubMed  Google Scholar 

  26. Koeppen M, Eckle T, Eltzschig HK (2009) Selective deletion of the A1 adenosine receptor abolishes heart-rate slowing effects of intravascular adenosine in vivo. PLoS One 4:e6784

    Article  PubMed Central  PubMed  Google Scholar 

  27. Brignole M, Deharo JC, De Roy L et al (2011) Syncope due to idiopathic paroxysmal atrioventricular block: long-term follow-up of a distinct form of atrioventricular block. J Am Coll Cardiol 58:167–173

    Article  PubMed  Google Scholar 

  28. Maisel AS, Krishnaswamy P, Nowak RM et al (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347:161–167

    Article  CAS  PubMed  Google Scholar 

  29. Lega JC, Lacasse Y, Lakhal L et al (2009) Natriuretic peptides and troponins in pulmonary embolism: a meta-analysis. Thorax 64:869–875

    Article  PubMed  Google Scholar 

  30. Wozakowska-Kapton B (2004) Effects of sinus rhythm restoration on plasma brain natriuretic peptide in patients with atrial fibrillation. Am J Cardiol 93:155–158

    Google Scholar 

  31. Sutuvosky I, Katoh T, Ohno T et al (2004) Relationship between brain natriuretic peptide, myocardial wall stress, and ventricular arrhythmia severity. Jpn Heart J 45:771–777

    Article  Google Scholar 

  32. Pfister R, Hagemeister J, Esser S et al (2012) NT-pro-BNP for diagnostic and prognostic evaluation in patients hospitalized for syncope. Int J Cardiol 155:268–272

    Article  PubMed  Google Scholar 

  33. Reed MJ, Newby DE, Coull AJ et al (2010) The ROSE (risk stratification of syncope in the emergency department) study. J Am Coll Cardiol 55:713–721

    Article  CAS  PubMed  Google Scholar 

  34. Costantino G, Solbiati M, Sagone A et al (2011) Time course of B-type natriuretic peptides changes after ventricular fibrillation: relationships with cardiac syncope. Int J Cardiol 153:333–335

    PubMed  Google Scholar 

  35. Costantino G, Solbiati M, Casazza G et al (2014) Usefulness of N-terminal pro-B-type natriuretic Peptide increase as a marker for cardiac arrhythmia in patients with syncope. Am J Cardiol 113:98–102

    Article  CAS  PubMed  Google Scholar 

  36. Soteriades ES, Evans JC, Larson MG et al (2002) Incidence and prognosis of syncope. N Engl J Med 347:878–885

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaello Furlan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Furlan, R., Alboni, P., Mosqueda-Garcia, R. (2015). Pathophysiology of Vasovagal Syncope: Conclusive Remarks. In: Alboni, P., Furlan, R. (eds) Vasovagal Syncope. Springer, Cham. https://doi.org/10.1007/978-3-319-09102-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09102-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09101-3

  • Online ISBN: 978-3-319-09102-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics