Skip to main content

Cardiovascular Rhythms in Vasovagal Syncope

  • Chapter
  • First Online:
Vasovagal Syncope

Abstract

Vasovagal syncope is a disorder of regulation in which different quantities of neural sympathetic and vagal activities interact, resulting in an unstable autonomic profile before the loss of consciousness. The functional state of the cardiovascular autonomic control is mirrored by the amplitude (power) of the spontaneous fluctuations in RR interval and blood pressure variability and in the pattern of the discharge activity of the post-ganglionic sympathetic fibers (muscle sympathetic nerve activity, MSNA). Power-spectrum and cross-spectrum analysis methodologies enable the identification of the frequency and the quantification of the amplitude of these fluctuations, giving a valuable insight into the autonomic changes preceding vasovagal events which may remain hidden when simple heart rate or blood pressure values are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malliani A, Pagani M, Lombardi F et al (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492

    Article  CAS  PubMed  Google Scholar 

  2. Page IH (1974) Pathogenesis of arterial hypertension. JAMA 140:451–457

    Article  Google Scholar 

  3. Porta A, Castiglioni P, Di Rienzo M et al (2012) Short-term complexity indexes of heart period and systolic arterial pressure variabilities provide complementary information. J Appl Physiol (1985) 113(12):1810–1820

    Article  CAS  Google Scholar 

  4. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurements, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  5. Porta A, Baselli G, Cerutti S (2006) Implicit and explicit model-based signal processing for the analysis of short-term cardiovascular interactions. Proc IEEE 94:805–818

    Article  Google Scholar 

  6. Akselrod S, Gordon D, Ubel FA et al (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    Article  CAS  PubMed  Google Scholar 

  7. Pagani M, Lombardi F, Guzzetti S et al (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193

    Article  CAS  PubMed  Google Scholar 

  8. Magagnin V, Bassani T, Bari V et al (2011) Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices. Physiol Meas 32(11):1775–1786

    Article  PubMed  Google Scholar 

  9. Mainardi LT, Bianchi AM, Cerutti S (2002) Time-frequency and time-varying analysis for assessing the dynamic responses of cardiovascular control. Crit Rev Biomed Eng 30(1–3):175–217

    PubMed  Google Scholar 

  10. Malliani A (2000) The sympathovagal balance explored in the frequency domain principles of cardiovascular neural regulation in health and disease. Kluwer Academic Publishers, Boston/Dordrecht/London, pp 65–107

    Google Scholar 

  11. Furlan R, Porta A, Costa F et al (2000) Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation 101(8):886–892

    Article  CAS  PubMed  Google Scholar 

  12. Parati G, Saul JP, Di Rienzo M et al (1995) Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 25(6):1276–1286

    Article  CAS  PubMed  Google Scholar 

  13. Montano N, Furlan R, Guzzetti S et al (2009) Analysis of sympathetic neural discharge in rats and humans. Philos Trans R Soc A 367(1892):1265–1282

    Article  Google Scholar 

  14. Rimoldi O, Pierini S, Ferrari A et al (1990) Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs. Am J Physiol 258(4 Pt 2):H967–H976

    CAS  PubMed  Google Scholar 

  15. Pagani M, Furlan R, Pizzinelli P et al (1989) Spectral analysis of R-R and arterial pressure variabilities to assess sympatho-vagal interaction during mental stress in humans. J Hypertens Suppl 7(6):S14–S15

    Article  CAS  PubMed  Google Scholar 

  16. Montano N, Gnecchi Ruscone T, Porta A et al (1994) Power spectral analysis of heart rate variability to assess changes in sympatho-vagal balance during graded orthostatic tilt. Circulation 90:1826–1831

    Article  CAS  PubMed  Google Scholar 

  17. Rimoldi O, Furlan R, Pagani MR et al (1992) Analysis of neural mechanisms accompanying different intensities of dynamic exercise. Chest 101(5 Suppl):226S–230S

    Article  CAS  PubMed  Google Scholar 

  18. Furlan R, Piazza S, Bevilacqua M et al (1995) Pure autonomic failure: complex abnormalities in the neural mechanisms regulating the cardiovascular system. J Auton Nerv Syst 51:223–235

    Article  CAS  PubMed  Google Scholar 

  19. Mizumaki K, Fujiki A, Tani M et al (1995) Left ventricular dimensions and autonomic balance during head-up tilt differ between patients with isoproterenol-dependent and isoproterenol-independent neurally mediated syncope. J Am Coll Cardiol 26(1):164–173

    Article  CAS  PubMed  Google Scholar 

  20. Carrillo AE, Cheung SS, Flouris AD (2013) Autonomic nervous system modulation during accidental syncope induced by heat and orthostatic stress. Aviat Space Environ Med 84(7):722–725

    Article  PubMed  Google Scholar 

  21. Alehan D, Ayabakan C, Ozer S (2002) Heart rate variability and autonomic nervous system changes in children with vasovagal syncope. Pacing Clin Electrophysiol 25(9):1331–1338

    Article  PubMed  Google Scholar 

  22. Longin E, Reinhard J, von BC (2008) Autonomic function in children and adolescents with neurocardiogenic syncope. Pediatr Cardiol 29(4):763–770

    Article  CAS  PubMed  Google Scholar 

  23. Bianchi AM, Mainardi L, Petrucci E et al (1993) Time-variant power spectrum analysis for the detection of transient episodes in HRV signal. IEEE Trans Biomed Eng 40(2):136–144

    Article  CAS  PubMed  Google Scholar 

  24. Furlan R, Piazza S, Dell’Orto S et al (1998) Cardiac autonomic patterns preceding occasional vasovagal reactions in healthy humans. Circulation 98(17):1756–1761

    Article  CAS  PubMed  Google Scholar 

  25. Morillo CA, Eckberg DL, Ellenbogen KA et al (1997) Vagal and sympathetic mechanisms in patients with orthostatic vasovagal syncope. Circulation 96(8):2509–2513

    Article  CAS  PubMed  Google Scholar 

  26. Lepicosvka V, Novak P, Nadeau R (1992) Time-frequency dynamics in neurally mediated syncope. Clin Auton Res 2:317–326

    Article  Google Scholar 

  27. Evrengul H, Tavli V, Evrengul H et al (2006) Spectral and time-domain analyses of heart-rate variability during head-upright tilt-table testing in children with neurally mediated syncope. Pediatr Cardiol 27(6):670–678

    Article  PubMed  Google Scholar 

  28. Moak JP, Bailey JJ, Makhlouf FT (2002) Simultaneous heart rate and blood pressure variability analysis. Insight into mechanisms underlying neurally mediated cardiac syncope in children. J Am Coll Cardiol 40(8):1466–1474

    Article  PubMed  Google Scholar 

  29. Piccirillo G, Naso C, Moise A et al (2004) Heart rate and blood pressure variability in subjects with vasovagal syncope. Clin Sci (Lond) 107(1):55–61

    Article  Google Scholar 

  30. Kamiya A, Hayano J, Kawada T et al (2005) Low-frequency oscillation of sympathetic nerve activity decreases during development of tilt-induced syncope preceding sympathetic withdrawal and bradycardia. Am J Physiol Heart Circ Physiol 289(4):H1758–H1769

    Article  CAS  PubMed  Google Scholar 

  31. Stauss HM, Anderson EA, Haynes WG et al (1998) Frequency response characteristics of sympathetically mediated vasomotor waves in humans. Am J Physiol 274(4 Pt 2):H1277–H1283

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaello Furlan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Furlan, R., Montano, N., Porta, A. (2015). Cardiovascular Rhythms in Vasovagal Syncope. In: Alboni, P., Furlan, R. (eds) Vasovagal Syncope. Springer, Cham. https://doi.org/10.1007/978-3-319-09102-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09102-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09101-3

  • Online ISBN: 978-3-319-09102-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics