Skip to main content

The Common Structure of the Curves Having a Same Gauss Word

  • Chapter
Automata, Universality, Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 12))

  • 728 Accesses

Abstract

Gauss words are finite sequences of letters associated with self-intersecting closed curves in the plane. (These curves have no “triple” self-intersection). These sequences encode the order of intersections on the curves. We characterize, up to homeomorphism, all curves having a given Gauss word. We extend this characterization to the n-tuples of closed curves having a given n-tuple of words, that we call a Gauss multiword. These words encode the self-intersections of the curves and their pairwise intersections. Our characterization uses decompositions of strongly connected graphs in 3-edge-connected components and algebraic terms formalizing these decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, C.: The knot book. AMS (2004)

    Google Scholar 

  2. Bollobas, B.: Modern graph theory. Springer (2001)

    Google Scholar 

  3. Chaves, N., Weber, C.: Plombages de rubans et problème des mots de Gauss. Exp. Math. 12, 53–77 (1994)

    MATH  MathSciNet  Google Scholar 

  4. Courcelle, B.: The monadic second-order logic of graphs XII: Planar graphs and planar maps. Theoret. Comput. Sci. 237, 1–32 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Courcelle, B.: The atomic decomposition of strongly connected graphs, Research report (June 2013), http://hal.archives-ouvertes.fr/hal-00875661

  6. Courcelle, B., Dussaux, V.: Map genus, forbidden maps and monadic second-order logic. The Electronic Journal of Combinatorics 9(1), 40 (2002), http://www.combinatorics.org/Volume_9/Abstracts/v9i1r40.html

    MathSciNet  Google Scholar 

  7. Diestel, R.: Graph theory, 4th edn. Springer (2010), http://diestel-graph-theory.com

  8. de Fraysseix, H., Ossona de Mendez, P.: On a characterization of Gauss codes. Discrete Comput. Geom. 22, 287–295 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Galil, Z., Italiano, G.: Maintaining the 3-edge-connected components of a graph on-line. SIAM J. Comput. 22, 11–28 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Godsil, C., Royle, G.: Algebraic graph theory. Springer (2001)

    Google Scholar 

  11. Lins, S., Richter, B., Shank, H.: The Gauss code problem off the plane. Aequationes Mathematicae 33, 81–95 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lovasz, L., Marx, M.: A forbidden substructure characterization of Gauss codes. Bulletin of the AMS 82, 121–122 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math. 12, 6–26 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mohar, B., Thomassen, C.: Graphs on surfaces. The Johns Hopkins University Press (2001)

    Google Scholar 

  15. Naor, D., Gusfield, D., Martel, C.: A fast algorithm for optimally increasing the edge connectivity. SIAM J. Comput. 26, 1139–1165 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rosenstiehl, P.: Solution algébrique du problème Gauss sur la permutation des points d’intersection d’une ou plusieurs courbes fermées du plan. C. R. Acad. Sc. Paris, Sér. A 283, 551–553 (1976)

    MATH  MathSciNet  Google Scholar 

  17. Tsin, Y.H.: A simple 3-edge-connected component algorithm. Theory Comput. Syst. 40, 125–142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Courcelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Courcelle, B. (2015). The Common Structure of the Curves Having a Same Gauss Word. In: Adamatzky, A. (eds) Automata, Universality, Computation. Emergence, Complexity and Computation, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-09039-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09039-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09038-2

  • Online ISBN: 978-3-319-09039-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics