Skip to main content

Hot-Carrier Degradation in Silicon-Germanium Heterojunction Bipolar Transistors

  • Chapter
  • First Online:
Hot Carrier Degradation in Semiconductor Devices

Abstract

While the SiGe HBT evolution has led to the significant proliferation of BiCMOS technologies and mixed-signal applications, a host of reliability issues has come to the forefront due to its suitability for multiple applications ranging from high-performance analog to millimeter-wave applications. Hot-carrier induced reliability degradation mechanism is one of the primary issues that strongly defines the safe-operating area of a SiGe HBT device and its usable lifetime. Understanding of the SiGe HBT reliability from hot-carrier induced degradation has developed significantly over the past few years. As the device performance gets scaled, a more predictive approach to understanding and estimating hot-carrier degradation is underway. This chapter attempts to highlight some of the important links that will define the future of hot-carrier reliability studies in SiGe HBTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Chevalier, Advanced BiCMOS technologies for GHz integrated circuits, in Short Course of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2011)

    Google Scholar 

  2. J.D. Cressler, SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications. IEEE Trans. Microw. Theory Tech. 46(5), 572–589 (1998)

    Article  Google Scholar 

  3. J.D. Cressler, G. Niu, Silicon-Germanium Heterojunction Bipolar Transistors. (Artech House, Boston, 2003)

    Google Scholar 

  4. J.D. Cressler, Emerging application opportunities for SiGe technology, in IEEE Custom Integrated Circuits Conference, Sept 2008, pp. 57–64

    Google Scholar 

  5. J.D. Cressler, Emerging SiGe HBT reliability issues for mixed-signal circuit applications. IEEE Tran. Device Mater. Reliab. 4(2), 222–236 (2004)

    Article  Google Scholar 

  6. J.D. Cressler, Radiation effects in SiGe technology. IEEE Trans. Nucl. Sci. 60(3), 1992–2014 (2013)

    Article  Google Scholar 

  7. J.D. Cressler (ed.), Silicon Heterostructure Handbook: Materials, Fabrication, Devices, Circuits, and Applications of SiGe and Si Strained-Layer Epitaxy. (CRC Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  8. J. Yuan, J.D. Cressler, Design and optimization of superjunction collectors for use in high-speed SiGe HBTs. IEEE Trans. Electron Devices 58(6), 1655–1662 (2011)

    Article  Google Scholar 

  9. R. Krithivasan, Y. Lu, J.D. Cressler, J.-S. Rieh, M.H. Khater, D. Ahlgren, G. Freeman, Half-terahertz operation of SiGe HBTs. IEEE Electron Device Lett. 27(7), 567–569 (2006)

    Article  Google Scholar 

  10. P.S. Chakraborty, A.S. Cardoso, B.R. Wier, A.P. Omprakash, J.D. Cressler, M. Kaynak, B. Tillack, A 0.8 THz f MAX SiGe HBT operating at 4.3 K. IEEE Electron Device Lett. 35(2), 151–153 (2014)

    Google Scholar 

  11. A. Joseph, D. Coolbaugh, D. Harame, G. Freeman, S. Subbanna, M. Doherty, J. Dunn, C. Dickey, D. Greenberg, R. Groves, M. Meghelli, A. Rylyakov, M. Sorna, O. Schreiber, D. Herman, T. Tanji, 0.13 μm 210 GHz f T SiGe HBTs - expanding the horizons of SiGe BiCMOS, in Digest of Technical Papers for IEEE International Solid State Circuits Conference (ISSCC), Feb 2002, pp. 180–182

    Google Scholar 

  12. J.-S. Rieh, B. Jagannathan, H. Chen, K. T. Schonenberg, D. Angell, A. Chinthakindi, J. Florkey, F. Golan, D. Greenberg, S.J. Jeng, M. Khater, F. Pagette, C. Schnabel, P. Smith, A. Stricker, K. Vaed, R. Volant, D. Ahlgren, G. Freeman, K. Stein, S. Subbanna, SiGe HBTs with cut-off frequency of 350 GHz, in Technical Digest for IEEE International Electron Devices Meeting (IEDM), Dec 2002, pp. 771–774

    Google Scholar 

  13. H. Rücker, B. Heinemann, W. Winkler, R. Barth, J. Borngraber, J. Drews, G.G. Fischer, A. Fox, T. Grabolla, U. Haak, D. Knoll, F. Korndorfer, A. Mai, S. Marschmeyer, P. Schley, D. Schmidt, J. Schmidt, K. Schulz, B. Tillack, D. Wolansky, Y. Yamamoto, A 0.13 μm SiGe BiCMOS technology featuring f T/f MAX of 240/330 GHz and gate delays below 3 ps, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2009, pp. 166–169

    Google Scholar 

  14. P. Chevalier, F. Pourchon, T. Lacave, G. Avenier, Y. Campidelli, L. Depoyan, G. Troillard, M. Buczko, D. Gloria, D. Celi, C. Gaquiere, A. Chantre, A conventional double-polysilicon FSA-SEG Si/SiGe: C HBT reaching 400 GHz f MAX, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2009, pp. 1–4

    Google Scholar 

  15. S. Van Huylenbroeck, A. Sibaja-Hernandez, R. Venegas, S. You, G. Winderickx, D. Radisic, W. Lee, P. Ong, T. Vandeweyer, N. Nguyen, K. De Meyer, S. Decoutere, A 400 GHz f MAX fully self-aligned SiGe: C HBT architecture, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2009, pp. 5–8

    Google Scholar 

  16. S. Decoutere, S. Van Huylenbroeck, B. Heinemann, A. Fox, P. Chevalier, A. Chantre, T.F. Meister, K. Aufinger, M. Schroter, Advanced process modules and architectures for half-terahertz SiGe: C HBTs, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2009, pp. 9–16

    Google Scholar 

  17. B. Geynet, P. Chevalier, B. Vandelle, F. Brossard, N. Zerounian, M. Buczko, D. Gloria, F. Aniel, G. Dambrine, F. Danneville, D. Dutartre, A. Chantre, SiGe HBTs featuring f T greater than 400 GHz at room temperature, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2008, pp. 121–124

    Google Scholar 

  18. B. Heinemann, R. Barth, D. Bolze, J. Drews, G.G. Fischer, A. Fox, O. Fursenko, T. Grabolla, U. Haak, D. Knoll, R. Kurps, M. Lisker, S. Marschmeyer, H. Rucker, D. Schmidt, J. Schmidt, M.A. Schubert, B. Tillack, C. Wipf, D. Wolansky, Y. Yamamoto, SiGe HBT technology with f T/f MAX of 300 GHz/500 GHz and 2.0 ps CML gate delay, in Technical Digest for IEEE International Electron Devices Meeting (IEDM), Dec 2010, pp. 688–691

    Google Scholar 

  19. J.J. Pekarik, J.W. Adkisson, R. Camillo-Castillo, P. Cheng, J. Ellis-Monaghan, P.B. Gray, D.L. Harame, M. Khater, Q. Liu, A. Vallett, B. Zetterlund, Co-integration of high-performance and high-breakdown SiGe HBTs in a BiCMOS technology, in Proceedings of the Government Microcircuit Applications and Critical Technology (GOMACTech) Conference, Sept 2012, pp. 1–4

    Google Scholar 

  20. E. Preisler, G. Talor, D. Howard, Z. Yan, R. Booth, J. Zheng, S. Chaudhry, M. Racanelli, A millimeter-wave capable SiGe BiCMOS process with 270 GHz f MAX HBTs designed for high volume manufacturing, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2011, pp. 74–78

    Google Scholar 

  21. P. Chevalier, T.F. Meister, B. Heinemann, S. Van Huylenbroeck, W. Liebl, A. Fox, A. Sibaja-Hernandez, A. Chantre, Towards THz SiGe HBTs, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2011, pp. 57–65

    Google Scholar 

  22. J. Yuan, J.D. Cressler, R. Krithivasan, T. Thrivikraman, M.H. Khater, D.C. Ahlgren, A.J. Joseph, J.-S. Rieh, On the performance limits of cryogenically operated SiGe HBTs and its relation to scaling for terahertz speeds. IEEE Trans. Electron Devices 56(5), 1007–1019 (2009)

    Article  Google Scholar 

  23. H. Rücker, B. Heinemann, A. Fox, Half-terahertz SiGe BiCMOS technology, in Proceedings of the IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Jan 2012, pp. 133–136

    Google Scholar 

  24. J. Cressler, A retrospective on the SiGe HBT: what we do know, what we don’t know, and what we would like to know better, in Proceedings of the IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Jan 2013, pp. 81–83

    Google Scholar 

  25. J.D. Burnett, C. Hu, Modeling hot-carrier effects in polysilicon emitter bipolar transistors. IEEE Trans. Electron Devices 35(12), 2238–2244 (1988)

    Article  Google Scholar 

  26. A. Neugroschel, C.T. Sah, M.S. Carroll, Degradation of bipolar transistor current gain by hot holes during reverse emitter-base bias stress. IEEE Trans. Electron Devices 43(8), 1286–1290 (1996)

    Article  Google Scholar 

  27. M.S. Carroll, A. Neugroschel, C.T. Sah, Degradation of silicon bipolar junction transistors at high forward current densities. IEEE Trans. Electron Devices 44(1), 110–117 (1997)

    Article  Google Scholar 

  28. D.L. Harame, D.C. Ahlgren, D.D. Coolbaugh, J.S. Dunn, G.G. Freeman, J.D. Gillis, R.A. Groves, G.N. Hendersen, R.A. Johnson, A.J. Joseph, S. Subbanna, A.M. Victor, K.M. Watson, C.S. Webster, P.J. Zampardi. Current status and future trends of SiGe BiCMOS technology. IEEE Trans. Electron Devices 48(11) 2575–2594 (2001)

    Article  Google Scholar 

  29. U. Gogineni, J.D. Cressler, G. Niu, D.L. Harame, Hot electron and hot hole degradation of UHV/CVD SiGe HBT’s. IEEE Trans. Electron Devices 47(7), 1440–1448 (2000)

    Article  Google Scholar 

  30. J.A. Babcock, J.D. Cressler, L.S. Vempati, A.J. Joseph, D.L. Harame, Correlation of low-frequency noise and emitter-base reverse-bias stress in epitaxial Si- and SiGe-base bipolar transistors, in Technical Digest for IEEE International Electron Devices Meeting (IEDM), Dec 1995, pp. 357–360

    Google Scholar 

  31. A. Neugroschel, C.T. Sah, M.S. Carroll, Current-acceleration for rapid time-to-failure determination of bipolar junction transistors under emitter-base reverse-bias stress. IEEE Trans. Electron Devices 42(7), 1380–1383 (1995)

    Article  Google Scholar 

  32. A. Neugroschel, C.T. Sah, M.S. Carroll, Accelerated reverse emitter-base bias stress methodologies and time-to-failure application. IEEE Electron Device Lett. 17(3), 112–114 (1996)

    Article  Google Scholar 

  33. R.A. Wachnik, T.J. Bucelot, G.P. Li, Degradation of bipolar transistors under high current stress at 300 K. J. Appl. Phys. 63(9), 4734–4740 (1988)

    Article  Google Scholar 

  34. C.J. Sun, T.A. Grotjohn, C.-J. Huang, D.K. Reinhard, C.-C.W. Yu, Forward-bias stress effects on BJT gain and noise characteristics. IEEE Trans. Electron Devices 41(5), 787–792 (1994)

    Article  Google Scholar 

  35. G. Zhang, J.D. Cressler, G. Niu, A.J. Joseph, A new “mixed-mode” reliability degradation mechanism in advanced Si and SiGe bipolar transistors. IEEE Trans. Electron Devices 49(12), 2151–2156 (2002)

    Article  Google Scholar 

  36. C. Zhu, Q. Liang, R.A. Al-Huq, J.D. Cressler, Y. Lu, T. Chen, A.J. Joseph, G. Niu, Damage mechanisms in impact-ionization-induced mixed-mode reliability degradation of SiGe HBTs. IEEE Trans. Device Mater. Reliab. 5(1), 142–149 (2005)

    Article  Google Scholar 

  37. C.M. Grens, P. Cheng, J.D. Cressler, Reliability of SiGe HBTs for power amplifiers – part I: large-signal RF performance and operating limits. IEEE Trans. Device Mater. Reliab. 9(3), 431–439 (2009)

    Article  Google Scholar 

  38. T.K. Thrivikraman, A. Madan, J.D. Cressler, On the large-signal robustness of SiGe HBT LNAs for high-frequency wireless applications, in Proceedings of the IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Jan 2010, pp. 156–159

    Google Scholar 

  39. S. Seth, T. Thrivikraman, P. Cheng, J.D. Cressler, J.A. Babcock, A. Buchholz, A large-signal RF reliability study of complementary SiGe HBTs on SOI intended for use in wireless applications, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2010, pp. 133–136

    Google Scholar 

  40. M. Borgarino, J.G. Tartarin, J. Kuchenbecker, T. Parra, H. Lafontaine, T. Kovacic, R. Plana, J. Graffeuil, On the effects of hot carriers on the RF characteristics of Si/SiGe heterojunction bipolar transistors. IEEE Microw. Guid. Wave Lett. 10(11), 466–468 (2000)

    Article  Google Scholar 

  41. S.-Y. Huang, K.-M. Chen, G.-W. Huang, V. Liang, H.-C. Tseng, T.-L. Hsu, C.-Y. Chang, Hot-carrier induced degradations on RF power characteristics of SiGe heterojunction bipolar transistors. IEEE Trans. Device Mater. Reliab. 5(2), 183–189 (2005)

    Article  Google Scholar 

  42. E.O. Johnson, Physical limitations on frequency and power parameters of transistors. RCA Rev. 26, pp. 163–177 (1965)

    Google Scholar 

  43. J.-S. Rieh, B. Jagannathan, D. Greenberg, G. Freeman, S. Subbanna, A doping concentration-dependent upper limit of the breakdown voltagecutoff frequency product in Si bipolar transistors. Solid State Electron. 48(2), 339–343 (2004)

    Article  Google Scholar 

  44. K.K. Ng, M.R. Frei, C.A. King, Reevaluation of the f T BV CEO limit on Si bipolar transistors. IEEE Trans. Electron Devices 45(8), 1854–1855 (1998)

    Article  Google Scholar 

  45. P. Cheng, C. Zhu, A. Appaswamy, J.D. Cressler, A new current-sweep method for assessing the mixed-mode damage spectrum of SiGe HBTs. IEEE Trans. Device Mater. Reliab. 7(3), 479–487 (2007)

    Article  Google Scholar 

  46. P. Cheng, C.M. Grens, A. Appaswamy, P.S. Chakraborty, J.D. Cressler, Modeling mixed-mode DC and RF stress in SiGe HBT power amplifiers, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2008, pp. 133–136

    Google Scholar 

  47. P. Cheng, C.M. Grens, J.D. Cressler, Reliability of SiGe HBTs for power amplifiers–part II: underlying physics and damage modeling. IEEE Trans. Device Mater. Reliab. 9(3), 440–448 (2009)

    Article  Google Scholar 

  48. T. Vanhoucke, G.A.M. Hurkx, D. Panko, R. Campos, A. Piontek, P. Palestri, L. Selmi, Physical description of the mixed-mode degradation mechanism for high performance bipolar transistors, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2006, pp. 1–4

    Google Scholar 

  49. P.S. Chakraborty, A.C. Appaswamy, P.K. Saha, N.K. Jha, J.D. Cressler, H. Yasuda, B. Eklund, R. Wise, Mixed-mode stress degradation mechanisms in pnp SiGe HBTs, in Proceedings of the IEEE International Reliability Physics Symposium (IRPS), April 2009, pp. 83–88

    Google Scholar 

  50. J. Yuan, J.D. Cressler, K.A. Moen, P.S. Chakraborty, An investigation of collector-base transport in SiGe HBTs designed for half-terahertz speeds, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct 2010, pp. 157–160

    Google Scholar 

  51. K.A. Moen, P.S. Chakraborty, U.S. Raghunathan, J.D. Cressler, H. Yasuda, Predictive physics-based TCAD modeling of the mixed-mode degradation mechanism in SiGe HBTs. IEEE Trans. Electron Devices 59(11), 2895–2901 (2012)

    Article  Google Scholar 

  52. U.S. Raghunathan, P.S. Chakraborty, B. Wier, J.D. Cressler, H. Yasuda, P. Menz, TCAD modeling of accumulated damage during time-dependent mixed-mode stress, in Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Sept 2013, pp. 179–182

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Semiconductor Research Corporation and Texas Instruments. The authors are grateful to Hiroshi Yasuda, Philipp Menz, and Keith Green from Texas Instruments; and to the members of the SiGe Devices and Circuits Group (particularly Uppili Raghunathan, Brian Wier, Adilson Cardoso, Anup Omprakash, and Tikurete Gebremariam) for their many contributions to this chapter. The authors would like to specially thank Anup Omprakash and Michael Kroger for their assistance with the graphics, formatting, and proofreading of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha S. Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chakraborty, P.S., Cressler, J.D. (2015). Hot-Carrier Degradation in Silicon-Germanium Heterojunction Bipolar Transistors. In: Grasser, T. (eds) Hot Carrier Degradation in Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08994-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08994-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08993-5

  • Online ISBN: 978-3-319-08994-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics