Skip to main content

A Robust One-Class Classification Model with Interval-Valued Data Based on Belief Functions and Minimax Strategy

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8556))

Abstract

A robust model for solving the one-class classification problem by interval-valued training data is proposed in the paper. It is based on using Dempster-Shafer theory for getting the lower and upper risk measures. The minimax or pessimistic strategy is applied to state an optimization problem in the framework of the modified support vector machine (SVM). The algorithm for computing optimal parameters of the classification function stems from extreme points of the convex polytope produced by the interval-valued elements of a training set. It is shown that the hard non-linear optimization problem is reduced to a finite number of standard SVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell, C.: Kernel methods: a survey of current techniques. Neurocomputing 48(1-4), 63–84 (2002)

    Article  MATH  Google Scholar 

  2. Campbell, C., Bennett, K.: A linear programming approach to novelty detection. In: Leen, T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 395–401. MIT Press (2001)

    Google Scholar 

  3. Cherkassky, V., Mulier, F.: Learning from Data: Concepts, Theory, and Methods. Wiley-IEEE Press, UK (2007)

    Book  Google Scholar 

  4. Scholkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  5. Scholkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, pp. 526–532 (2000)

    Google Scholar 

  6. Markou, M., Singh, S.: Novelty detection: a review—part 1: statistical approaches. Signal Processing 83(12), 2481–2497 (2003)

    Article  MATH  Google Scholar 

  7. Bartkowiak, A.: Anomaly, novelty, one-class classification: A comprehensive introduction. International Journal of Computer Information Systems and Industrial Management Applications 3, 61–71 (2011)

    Google Scholar 

  8. Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification. In: Coyle, L., Freyne, J. (eds.) AICS 2009. LNCS, vol. 6206, pp. 188–197. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22(2), 85–126 (2004)

    Article  MATH  Google Scholar 

  10. Scholkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge (2002)

    Google Scholar 

  11. Tax, D., Duin, R.: Support vector data description. Machine Learning 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  12. Tax, D., Duin, R.: Support vector domain description. Pattern Recognition Letters 20(11), 1191–1199 (1999)

    Article  Google Scholar 

  13. Bicego, M., Figueiredo, M.: Soft clustering using weighted one-class support vector machines. Pattern Recognition 42(1), 27–32 (2009)

    Article  MATH  Google Scholar 

  14. Kwok, J., Tsang, I.H., Zurada, J.: A class of single-class minimax probability machines for novelty detection. IEEE Transactions on Neural Networks 18(3), 778–785 (2007)

    Article  Google Scholar 

  15. Utkin, L.: A framework for imprecise robust one-class classification models. International Journal of Machine Learning and Cybernetics (2014), doi:10.1007/s13042-012-0140-6

    Google Scholar 

  16. Utkin, L., Zhuk, Y.: Robust novelty detection in the framework of a contamination neighbourhood. International Journal of Intelligent Information and Database Systems 7(3), 205–224 (2013)

    Article  Google Scholar 

  17. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  18. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    Book  MATH  Google Scholar 

  19. Utkin, L., Zhuk, Y.: Imprecise prior knowledge incorporating into one-class classification. Knowledge and Information Systems, 1–24 (2014)

    Google Scholar 

  20. Pelckmans, K., Brabanter, J.D., Suykens, J., Moor, B.D.: Handling missing values in support vector machine classifiers. Neural Networks 18(5-6), 684–692 (2005)

    Article  MATH  Google Scholar 

  21. Ishibuchi, H., Tanaka, H., Fukuoka, N.: Discriminant analysis of multi-dimensional interval data and its application to chemical sensing. International Journal of General Systems 16(4), 311–329 (1990)

    Article  MATH  Google Scholar 

  22. Nivlet, P., Fournier, F., Royer, J.J.: Interval discriminant analysis: An efficient method to integrate errors in supervised pattern recognition. In: Second International Symposium on Imprecise Probabilities and Their Applications, Ithaca, NY, USA, pp. 284–292 (2001)

    Google Scholar 

  23. Silva, A., Brito, P.: Linear discriminant analysis for interval data. Computational Statistics 21, 289–308 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Neto, E.L., de Carvalho, F.: Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis 52, 1500–1515 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Angulo, C., Anguita, D., Gonzalez-Abril, L., Ortega, J.: Support vector machines for interval discriminant analysis. Neurocomputing 71(7-9), 1220–1229 (2008)

    Article  Google Scholar 

  26. Hao, P.Y.: Interval regression analysis using support vector networks. Fuzzy Sets and Systems 60, 2466–2485 (2009)

    Article  Google Scholar 

  27. Wang, J., Lu, H., Plataniotis, K., Lu, J.: Gaussian kernel optimization for pattern classification. Pattern Recognition 42(7), 1237–1247 (2009)

    Article  MATH  Google Scholar 

  28. Tikhonov, A., Arsenin, V.: Solution of Ill-Posed Problems. W.H. Winston, Washington, DC (1977)

    Google Scholar 

  29. Dempster, A.: Upper and lower probabilities induced by a multi-valued mapping. Annales of Mathematical Statistics 38(2), 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar 

  31. Halpern, J., Fagin, R.: Two views of belief: Belief as generalized probability and belief as evidence. Artificial Intelligence 54(3), 275–317 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nguyen, H., Walker, E.: On decision making using belief functions. In: Yager, R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer theory of Evidence, pp. 311–330. Wiley, New York (1994)

    Google Scholar 

  33. Strat, T.: Decision analysis using belief functions. International Journal of Approximate Reasoning 4(5), 391–418 (1990)

    Article  MATH  Google Scholar 

  34. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D., Sentz, K.: Constructing probability boxes and Dempster-Shafer structures. Report SAND2002-4015, Sandia National Laboratories (January 2003)

    Google Scholar 

  35. Kriegler, E., Held, H.: Utilizing belief functions for the estimation of future climate change. International Journal of Approximate Reasoning 39, 185–209 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Robert, C.: The Bayesian Choice. Springer, New York (1994)

    Book  MATH  Google Scholar 

  37. Berger, J.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1985)

    Google Scholar 

  38. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. Journal of Mathematical Economics 18(2), 141–153 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Utkin, L.V., Zhuk, Y.A., Chekh, A.I. (2014). A Robust One-Class Classification Model with Interval-Valued Data Based on Belief Functions and Minimax Strategy. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2014. Lecture Notes in Computer Science(), vol 8556. Springer, Cham. https://doi.org/10.1007/978-3-319-08979-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08979-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08978-2

  • Online ISBN: 978-3-319-08979-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics