Skip to main content

Altered Galectin Glycosylation: Potential Factor for the Diagnostics and Therapeutics of Various Cardiovascular and Neurological Disorders

  • Conference paper
  • First Online:
GeNeDis 2014

Abstract

Galectins are β-galactoside binding mammalian proteins characterized by the presence of a conserved carbohydrate recognition domain, expressed in almost all taxa of living organisms and involved in broad range of significant biological and physiological functions. Previously, we reported the purification and extensive characterization of galectin-1 from goat (Capra hircus) heart. Interestingly, the purified protein was found to have significant level of glycosylation. This intrigued us to evaluate the involvement of glycosylation in relation to protein’s structural and functional integrity in its purified form. In the present study, an extensive comparative physicochemical characterization has been performed between the glycosylated and deglycosylated form of the purified protein. Deglycosylation resulted in an enhanced fluorescence quenching and marked reduction in pH and thermal stability of the purified galectin. Exposure to various biologically active chemicals showed significant differences in the properties and stability profile, causing significant deviations from its regular secondary structure in the deglycosylated form. These results clearly indicated enhanced structural and functional stabilization in the glycosylated galectin. The data revealed herein adds a vital facet demonstrating the significance of galectin expression and glycosylation in causation, progression, and possible therapeutics of associated clinical disorders. Our approach also allowed us to define some key interactions between the purified galectin and carbohydrate ligands that could well serve as an important landmark for designing new drug protocols for various cardiovascular and neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bacigalupo ML, Manzi M, Rabinovich GA, Troncoso MF (2013) Hierarchical and selective roles of galectins in hepatocarcinogenesis, liver fibrosis and inflammation of hepatocellular carcinoma. World J Gastroenterol 19(47):8831–8849. doi:10.3748/wjg.v19.i47.8831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ashraf GM, Rizvi S, Naqvi S, Suhail N, Bilal N, Hasan S, Tabish M, Banu N (2010) Purification, characterization, structural analysis and protein chemistry of a buffalo heart galectin-1. Amino Acids 39(5):1321–1332. doi:10.1007/s00726-010-0574-7

    Article  CAS  PubMed  Google Scholar 

  3. Hasan SS, Ashraf GM, Banu N (2007) Galectins – potential targets for cancer therapy. Cancer Lett 253(1):25–33. doi:10.1016/j.canlet.2006.11.030

    Article  CAS  PubMed  Google Scholar 

  4. Camby I, Mercier ML, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16(11):137R–157R. doi:10.1093/glycob/cwl025

    Article  CAS  PubMed  Google Scholar 

  5. Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269(33):20807–20810

    CAS  PubMed  Google Scholar 

  6. Ashraf GM, Bilal N, Suhail N, Hasan S, Banu N (2010) Glycosylation of purified buffalo heart galectin-1 plays crucial role in maintaining its structural and functional integrity. Biochemistry 75(12):1450–1457

    CAS  PubMed  Google Scholar 

  7. Bardosi A, Bardosi L, Hendrys M, Wosgien B, Gabius HJ (1990) Spatial differences of endogenous lectin expression within the cellular organization of the human heart: a glycohistochemical, immunohistochemical, and glycobiochemical study. Am J Anat 188(4):409–418. doi:10.1002/aja.1001880409

    Article  CAS  PubMed  Google Scholar 

  8. Ashraf GM, Banu N, Ahmad A, Singh LP, Kumar R (2011) Purification, characterization, sequencing and biological chemistry of galectin-1 purified from Capra hircus (goat) heart. Protein J 30(1):39–51. doi:10.1007/s10930-010-9300-2

    Article  CAS  PubMed  Google Scholar 

  9. Shin T, Carrillo-Salinas FJ, Feliu Martinez A, Mecha M, Guaza C (2013) Immunohistochemical localization of galectin-3 in the brain with Theiler’s murine encephalomyelitis virus (DA strain) infection. Korean J Vet Res 53(3):159–162

    Article  Google Scholar 

  10. Stillman BN, Mischel PS, Baum LG (2005) New roles for galectins in brain tumors – from prognostic markers to therapeutic targets. Brain Pathol 15(2):124–132. doi:10.1111/j.1750-3639.2005.tb00507.x

    Article  PubMed  Google Scholar 

  11. Qiao X, Tian J, Chen P, Wang C, Ni J, Liu Q (2013) Galectin-1 is an interactive protein of selenoprotein M in the brain. Int J Mol Sci 14(11):22233–22245. doi:10.3390/ijms141122233

    Article  PubMed Central  PubMed  Google Scholar 

  12. Starossom Sarah C, Mascanfroni Ivan D, Imitola J, Cao L, Raddassi K, Hernandez Silvia F, Bassil R, Croci Diego O, Cerliani Juan P, Delacour D, Wang Y, Elyaman W, Khoury Samia J, Rabinovich Gabriel A (2012) Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37(2):249–263. doi:10.1016/j.immuni.2012.05.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jin J-K, Na Y-J, Song J-H, Joo H-G, Kim S, Kim J-I, Choi E-K, Carp RI, Kim Y-S, Shin T (2007) Galectin-3 expression is correlated with abnormal prion protein accumulation in murine scrapie. Neurosci Lett 420(2):138–143. doi:10.1016/j.neulet.2007.04.069

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Zhang S, Lin F, Chu W, Yue S (2013) Elevated galectin-3 levels in the serum of patients with Alzheimer’s disease. Am J Alzheimer’s Dis Other Demen. doi:10.1177/1533317513495107

    Google Scholar 

  15. Lerman BJ, Hoffman EP, Sutherland ML, Bouri K, Hsu DK, Liu F-T, Rothstein JD, Knoblach SM (2012) Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Behav 2(5):563–575. doi:10.1002/brb3.75

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218(1):1–27

    Article  CAS  PubMed  Google Scholar 

  17. Komatsu S, Yamada E, Furukawa K (2009) Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids 36(1):115–123. doi:10.1007/s00726-008-0039-4

    Article  CAS  PubMed  Google Scholar 

  18. Hughes RC (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta 1473(1):172–185

    Article  CAS  PubMed  Google Scholar 

  19. Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biological Procedures Online 11:32–51. doi:10.1007/s12575-009-9008-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  21. Raz A, Lotan R (1981) Lectin-like activities associated with human and murine neoplastic cells. Cancer Res 41(9 Pt 1):3642–3647

    CAS  PubMed  Google Scholar 

  22. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  23. Yamabayashi S (1987) Periodic acid – Schiff – Alcian blue: a method for the differential staining of glycoproteins. Histochem J 19(10–11):565–571. doi:10.1007/bf01687364

    Article  CAS  PubMed  Google Scholar 

  24. Rasheedi S, Haq SK, Khan RH (2003) Guanidine hydrochloride denaturation of glycosylated and deglycosylated stem bromelain. Biochemistry 68(10):1097–1100

    CAS  PubMed  Google Scholar 

  25. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244(16):4406–4412

    CAS  PubMed  Google Scholar 

  26. Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7(2):171–181. doi:10.1016/j.pbi.2004.01.015

    Article  CAS  PubMed  Google Scholar 

  27. Arnold U, Ulbrich-Hofmann R (1997) Kinetic and thermodynamic thermal stabilities of ribonuclease A and ribonuclease B. Biochemistry 36(8):2166–2172. doi:10.1021/bi962723u

    Article  CAS  PubMed  Google Scholar 

  28. DeKoster GT, Robertson AD (1997) Thermodynamics of unfolding for Kazal-type serine protease inhibitors: entropic stabilization of ovomucoid first domain by glycosylation. Biochemistry 36(8):2323–2331. doi:10.1021/bi962580b

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe M, Nakamura O, Muramoto K, Ogawa T (2012) Allosteric regulation of the carbohydrate-binding ability of a novel conger eel galectin by d-mannoside. J Biol Chem 287(37):31061–31072. doi:10.1074/jbc.M112.346213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sola RJ, Griebenow KAI (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98(4):1223–1245. doi:10.1002/jps.21504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Sarkar A, Wintrode PL (2011) Effects of glycosylation on the stability and flexibility of a metastable protein: the human serpin? 1-antitrypsin. Int J Mass Spectrom 302(1–3):69–75. doi:10.1016/j.ijms.2010.08.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Solá RJ, Rodríguez-Martínez JA, Griebenow K (2007) Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications. Cell Mol Life Sci 64(16):2133–2152. doi:10.1007/s00018-007-6551-y

    Article  PubMed  Google Scholar 

  33. Abdelkebir K, Gaudière F, Morin-Grognet S, Coquerel G, Atmani H, Labat B, Ladam G (2011) Protein-triggered instant disassembly of biomimetic layer-by-layer films. Langmuir 27(23):14370–14379. doi:10.1021/la2033109

    Article  CAS  PubMed  Google Scholar 

  34. Barrozo A, Borstnar R, Marloie G, Kamerlin SCL (2012) Computational protein engineering: bridging the gap between rational design and laboratory evolution. Int J Mol Sci 13(10):12428–12460. doi:10.3390/ijms131012428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev 2(4):191–206

    Article  PubMed Central  PubMed  Google Scholar 

  36. Martínek V, Sklenář J, Dračínský M, Šulc M, Hofbauerová K, Bezouška K, Frei E, Stiborová M (2010) Glycosylation protects proteins against free radicals generated from toxic xenobiotics. Toxicol Sci 117(2):359–374. doi:10.1093/toxsci/kfq206

    Article  PubMed  Google Scholar 

  37. Levi G, Teichberg VI (1981) Isolation and physicochemical characterization of electrolectin, a beta-D-galactoside binding lectin from the electric organ of Electrophorus electricus. J Biol Chem 256(11):5735–5740

    CAS  PubMed  Google Scholar 

  38. Vincenzetti S, Cambi A, Maury G, Bertorelle F, Gaubert G, Neuhard J, Natalini P, Salvatori D, Sanctis GD, Vita A (2000) Possible role of two phenylalanine residues in the active site of human cytidine deaminase. Protein Eng 13(11):791–799. doi:10.1093/protein/13.11.791

    Article  CAS  PubMed  Google Scholar 

  39. Plugin glycosylation literature survey ricky connolly 091211-1 (trans: Ricky C)

    Google Scholar 

  40. Kim YH, Berry AH, Spencer DS, Stites WE (2001) Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins. Protein Eng 14(5):343–347. doi:10.1093/protein/14.5.343

    Article  CAS  PubMed  Google Scholar 

  41. Ketko AK, Lin C, Moore BB, LeVine AM (2013) Surfactant protein A binds flagellin enhancing phagocytosis and IL-1? production. PLoS One 8(12). doi: 10.1371/journal.pone.0082680

  42. Torrent J, Alvarez-Martinez MT, Liautard J-P, Balny C, Lange R (2005) The role of the 132–160 region in prion protein conformational transitions. Protein Sci 14(4):956–967. doi:10.1110/ps.04989405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Fatima A, Husain Q (2007) A role of glycosyl moieties in the stabilization of bitter gourd (Momordica charantia) peroxidase. Int J Biol Macromol 41(1):56–63. doi:10.1016/j.ijbiomac.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  44. Chirgadze YN, Nevskaya NA (1976) Infrared spectra and resonance interaction of amide-I vibration of the antiparallel-chain pleated sheet. Biopolymers 15(4):607–625. doi:10.1002/bip.1976.360150402

    Article  CAS  PubMed  Google Scholar 

  45. Huerta-Viga A, Woutersen S (2013) Protein denaturation with guanidinium: A 2D-IR study. J Phys Chem Lett 4(20):3397–3401. doi:10.1021/jz401754b

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Johnson WC (1988) Secondary structure of proteins through circular dichroism spectroscopy. Annu Rev Biophys Biophys Chem 17(1):145–166. doi:10.1146/annurev.bb.17.060188.001045

    Article  CAS  PubMed  Google Scholar 

  47. Mandal P, Molla AR, Mandal DK (2013) Denaturation of bovine spleen galectin-1in guanidine hydrochloride and fluoroalcohols: Structural characterization and implications for protein folding. J Biochem. doi:10.1093/jb/mvt084

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Aligarh Muslim University (Aligarh, India) for the facilities. Thanks are due to Deanship of Scientific Research (DSR) and King Fahd Medical Research Center (KFMRC), King Abdulaziz University (Jeddah, Saudi Arabia) for other facilities.

Conflict of interest: Declared none.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghulam Md Ashraf or Naheed Banu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ashraf, G.M. et al. (2015). Altered Galectin Glycosylation: Potential Factor for the Diagnostics and Therapeutics of Various Cardiovascular and Neurological Disorders. In: Vlamos, P., Alexiou, A. (eds) GeNeDis 2014. Advances in Experimental Medicine and Biology, vol 822. Springer, Cham. https://doi.org/10.1007/978-3-319-08927-0_10

Download citation

Publish with us

Policies and ethics