Skip to main content

Purinergic Receptor Stimulation Decreases Ischemic Brain Damage by Energizing Astrocyte Mitochondria

  • Chapter
  • First Online:
Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 11))

Abstract

As a leading cause of death in the world, cerebral ischemic stroke has limited treatment options. The lack of glucose and oxygen after stroke is particularly harmful in the brain because neuronal metabolism accounts for significantly more energy consumption per gram of body weight compared to other organs. Our laboratory has identified mitochondrial metabolism of astrocytes to be a key target for pharmacologic intervention, not only because astrocytes play a central role in regulating brain metabolism, but also because they are essential for neuronal health and support. Here we review current literature pertaining to the pathobiology of stroke, along with the role of astrocytes and metabolism in stroke. We also discuss our research, which has revealed that pharmacologic stimulation of metabotropic P2Y1 receptor signaling in astrocytes can increase mitochondrial energy production and also reduce damage after stroke.

*Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2MeSADP:

2 Methylthioadenosine triphosphate

6-NBDG:

6-Deoxy-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-aminoglucose

ANLS:

Astrocyte-neuron lactate shuttle

ANT:

Adenine nucleotide transporter

ApN:

Aminopeptidase N

ATP:

Adenosine triphosphate

BDNF:

Brain-derived neurotrophic factor

CBF:

Cerebral blood flow

DALY:

Disability-adjusted life-years

ER:

Endoplasmic reticulum

FAO:

Fatty acid oxidation

GCL:

Glutamate cysteine ligase

GFAP:

Glial fibrillary acidic protein

GLUT:

Glucose transporter

GPCR:

G protein-coupled receptor

GS:

Glutathione synthetase

GSH:

Glutathione

GSSG:

Glutathione disulfide

GST:

Glutathione S-transferase

IP3:

Inositol triphosphate

MCAO:

Middle cerebral artery occlusion

MCT:

Monocarboxylic acid transporter isoform

MICU:

Mitochondrial EF hand Ca2+ uptake porter

MRP1:

Multidrug resistance protein 1

NMDA:

N-methyl-d-aspartate

NQO1:

NAD(P)H dehydrogenase [quinone] 1

P2X:

Ionotropic purinergic receptor

P2Y:

Metabotropic purinergic receptor

PFKB3:

6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PPP:

Pentose phosphate pathway

RB:

Rose Bengal

ROS:

Reactive oxidative species

RSD:

Recurrent spreading depolarizations

TCA:

Tricarboxylic acid

Thy1:

Tyrosine hydroxylase 1

TMRM:

Tetra-methyl rhodamine methyl ester

tPA:

Recombinant tissue plasminogen activator

VDCC:

Voltage-dependent calcium channels

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    PubMed  CAS  Google Scholar 

  • Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    PubMed  CAS  PubMed Central  Google Scholar 

  • Almeida A (2012) Regulation of APC/C-Cdh1 and its function in neuronal survival. Mol Neurobiol 46:547–554

    PubMed  CAS  PubMed Central  Google Scholar 

  • Angulo MC, Kozlov AS, Charpak S, Audinat E (2004) Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24:6920–6927

    PubMed  CAS  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    PubMed  CAS  Google Scholar 

  • Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22:2443–2450

    PubMed  CAS  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    PubMed  CAS  PubMed Central  Google Scholar 

  • Badar-Goffer RS, Bachelard HS, Morris PG (1990) Cerebral metabolism of acetate and glucose studied by 13C-n.m.r. spectroscopy. A technique for investigating metabolic compartmentation in the brain. Biochem J 266:133–139

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab 26:1285–1297

    PubMed  CAS  Google Scholar 

  • Bak LK, Obel LF, Walls AB, Schousboe A, Faek SA, Jajo FS, Waagepetersen HS (2012) Novel model of neuronal bioenergetics: postsynaptic utilization of glucose but not lactate correlates positively with Ca2+ signalling in cultured mouse glutamatergic neurons. ASN Neuro 4:151–160

    Google Scholar 

  • Barreto G, White RE, Ouyang Y, Xu L, Giffard RG (2011) Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 11:164–173

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barros LF, Courjaret R, Jakoby P, Loaiza A, Lohr C, Deitmer JW (2009) Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices. Glia 57:962–970

    PubMed  CAS  Google Scholar 

  • Bender AS, Schousboe A, Reichelt W, Norenberg MD (1998) Ionic mechanisms in glutamate-induced astrocyte swelling: role of K+ influx. J Neurosci Res 52:307–321

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    PubMed  CAS  Google Scholar 

  • Bluml S, Moreno-Torres A, Shic F, Nguy CH, Ross BD (2002) Tricarboxylic acid cycle of glia in the in vivo human brain. NMR Biomed 15:1–5

    PubMed  CAS  Google Scholar 

  • Bolanos JP, Almeida A (2010) The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life 62:14–18

    PubMed  CAS  Google Scholar 

  • Bolanos JP, Almeida A, Moncada S (2010) Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35:145–149

    PubMed  CAS  Google Scholar 

  • Born GV (1985) Adenosine diphosphate as a mediator of platelet aggregation in vivo: an editorial view. Circulation 72:741–746

    PubMed  CAS  Google Scholar 

  • Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    PubMed  CAS  Google Scholar 

  • Bouzier AK, Thiaudiere E, Biran M, Rouland R, Canioni P, Merle M (2000) The metabolism of [3-(13)C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment. J Neurochem 75:480–486

    PubMed  CAS  Google Scholar 

  • Bouzier-Sore A, Voisin P, Bouchaud V, Bezancon E, Franconi J, Pellerin L (2006) Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci 24:1687–1694

    PubMed  Google Scholar 

  • Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24:8606–8620

    PubMed  CAS  Google Scholar 

  • Bridges RJ, Natale NR, Patel SA (2012) System xc(-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 165:20–34

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown AM (2004) Brain glycogen re-awakened. J Neurochem 89:537–552

    PubMed  CAS  Google Scholar 

  • Burnstock G (2012) Purinergic signalling: its unpopular beginning, its acceptance and its exciting future. Bioessays 34:218–225

    PubMed  CAS  Google Scholar 

  • Burnstock G, Brouns I, Adriaensen D, Timmermans J-P (2012) Purinergic signaling in the airways. Pharmacol Rev 64:834–868

    PubMed  CAS  Google Scholar 

  • Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron–glial networks. Semin Cell Dev Biol 22:205–213

    PubMed  CAS  Google Scholar 

  • Chan BS, Endo S, Kanai N, Schuster VL (2002) Identification of lactate as a driving force for prostanoid transport by prostaglandin transporter PGT. Am J Physiol Renal Physiol 282:F1097–F1102

    PubMed  CAS  Google Scholar 

  • Chatton JY, Marquet P, Magistretti PJ (2000) A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics. Eur J Neurosci 12:3843–3853

    PubMed  CAS  Google Scholar 

  • Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469

    PubMed  CAS  Google Scholar 

  • Chu X, Fu X, Zou L, Qi C, Li Z, Rao Y, Ma K (2007) Oncosis, the possible cell death pathway in astrocytes after focal cerebral ischemia. Brain Res 1149:157–164

    PubMed  CAS  Google Scholar 

  • Chuquet J, Quilichini P, Nimchinsky EA, Buzsáki G (2010) Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J Neurosci 30:15298–15303

    PubMed  CAS  PubMed Central  Google Scholar 

  • Coddington L, Rudolph S, Overstreet-Wadiche L (2013) Spillover-mediated feedforward inhibition functionally segregates interneuron activity. Neuron 78:1050–1062

    PubMed  CAS  PubMed Central  Google Scholar 

  • Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63:641–683

    PubMed  CAS  PubMed Central  Google Scholar 

  • Colombo E, Cordiglieri C, Melli G, Newcombe J, Krumbholz M, Parada L, Medico E, Hohlfeld R, Meinl E, Farina C (2012) Stimulation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide production and neurodegeneration. J Exp Med 209:521–535

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM (1991) Ca2+ waves in astrocytes. Cell Calcium 12:185–204

    PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JHC, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci 18:8794–8804

    PubMed  CAS  Google Scholar 

  • Denton RM, McCormack JG (1985) Ca2+ transport by mammalian mitochondria and its role in hormone action. Am J Physiol 259:E543–E554

    Google Scholar 

  • Department of Economic and Social Affairs, Population Division (2002) World population ageing: 1950-2050. United Nations, New York

    Google Scholar 

  • Department of Economic and Social Affairs, Population Division (2010) World population ageing 2009. United Nations, New York

    Google Scholar 

  • Department of Economic and Social Affairs, Population Division (2012) World population ageing and development 2012. United Nations, New York

    Google Scholar 

  • Dickinson DA, Forman HJ (2002) Glutathione in defense and signaling: lessons from a small thiol. Ann N Y Acad Sci 973:488–504

    PubMed  CAS  Google Scholar 

  • Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dienel GA, Hertz L (2005) Astrocytic contributions to bioenergetics of cerebral ischemia. Glia 50:362–388

    PubMed  Google Scholar 

  • Dietz RM, Weiss JH, Shuttleworth CW (2009) Contributions of Ca2+ and Zn2+ to spreading depression-like events and neuronal injury. J Neurochem 109(suppl 1):145–152

    PubMed  CAS  PubMed Central  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:586–602

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    PubMed  CAS  Google Scholar 

  • Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623

    PubMed  CAS  Google Scholar 

  • Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–318

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17:439–447

    PubMed  CAS  Google Scholar 

  • Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, Lehmann TN, Sarrafzadeh A, Willumsen L, Hartings JA, Sakowitz OW, Seemann JH, Thieme A, Lauritzen M, Strong AJ (2006) Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129:3224–3237

    PubMed  Google Scholar 

  • Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    PubMed  CAS  Google Scholar 

  • Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569

    PubMed  CAS  Google Scholar 

  • Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916

    PubMed  CAS  Google Scholar 

  • Duffy S, MacVicar BA (1996) In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J Neurosci 16:71–81

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Krause DN (2002) Cerebral blood flow and metabolism. Lippincott, Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Farkas DL, Wei MD, Febbroriello P, Carson JH, Loew LM (1989) Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys J 56:1053–1069

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fellin T, Carmignoto G (2004) Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 559:3–15

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743

    PubMed  CAS  Google Scholar 

  • Fernandez-Fernandez S, Almeida A, Bolanos JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443:3–11

    PubMed  CAS  Google Scholar 

  • Franke H, Krugel U, Grosche J, Heine C, Hartig W, Allgaier C, Illes P (2004) P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 127:431–441

    PubMed  CAS  Google Scholar 

  • Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P, Abbracchio MP (2004) Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y13 receptor. Biochem Pharmacol 68:113–124

    PubMed  CAS  Google Scholar 

  • Gachet C (2012) P2Y12 receptors in platelets and other hematopoietic and non-hematopoietic cells. Purinergic Signal 8:609–619

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111:522–536

    PubMed  CAS  PubMed Central  Google Scholar 

  • Giffard RG, Swanson RA (2005) Ischemia-induced programmed cell death in astrocytes. Glia 50:299–306

    PubMed  Google Scholar 

  • Gilligan AK, Thrift AG, Sturm JW, Dewey HM, Macdonell RA, Donnan GA (2005) Stroke units, tissue plasminogen activator, aspirin and neuroprotection: which stroke intervention could provide the greatest community benefit? Cerebrovasc Dis 20:239–244

    PubMed  CAS  Google Scholar 

  • Ginsberg MD (2003) Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 34:214–223

    PubMed  Google Scholar 

  • Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goyal RK, Sullivan MP, Chaudhury A (2013) Progress in understanding of inhibitory purinergic neuromuscular transmission in the gut. Neurogastroenterol Motil 25:203–207

    PubMed  CAS  Google Scholar 

  • Griffith OW, Mulcahy RT (1999) The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase. Adv Enzymol Relat Areas Mol Biol 73:209–267, xii

    Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MVL, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    PubMed  CAS  Google Scholar 

  • Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424

    PubMed  CAS  Google Scholar 

  • Hajnoczky G, Csordas G, Krishnamurthy R, Szalai G (2000) Mitochondrial calcium signaling driven by the IP3 receptor. J Bioenerg Biomembr 32:15–25

    PubMed  CAS  Google Scholar 

  • Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56:734–749

    PubMed  Google Scholar 

  • Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705

    PubMed  CAS  Google Scholar 

  • Hartings JA, Rolli ML, Lu XC, Tortella FC (2003) Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci 23:11602–11610

    PubMed  CAS  Google Scholar 

  • Hasbani MJ, Hyrc KL, Faddis BT, Romano C, Goldberg MP (1998) Distinct roles for sodium, chloride, and calcium in excitotoxic dendritic injury and recovery. Exp Neurol 154:241–258

    PubMed  CAS  Google Scholar 

  • Hassel B, Sonnewald U, Fonnum F (1995) Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose: an ex vivo 13C NMR spectroscopic study. J Neurochem 64:2773–2782

    PubMed  CAS  Google Scholar 

  • Hein TW, Xu W, Kuo L (2006) Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels. Invest Ophthalmol Vis Sci 47:693–699

    PubMed  Google Scholar 

  • Heiss W-D, Kracht LW, Thiel A, Grond M, Pawlik G (2001) Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain 124:20–29

    PubMed  CAS  Google Scholar 

  • Heo JH, Han SW, Lee SK (2005) Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 39:51–70

    PubMed  CAS  Google Scholar 

  • Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177–188

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Hulsmann S, Kirchhoff F (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20:2235–2239

    PubMed  Google Scholar 

  • Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    PubMed  CAS  Google Scholar 

  • Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci U S A 100:4879–4884

    PubMed  CAS  PubMed Central  Google Scholar 

  • James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447:247–260

    PubMed  CAS  Google Scholar 

  • Jurányi Z, Sperlágh B, Vizi ES (1999) Involvement of P2 purinoceptors and the nitric oxide pathway in [3H]purine outflow evoked by short-term hypoxia and hypoglycemia in rat hippocampal slices. Brain Res 823:183–190

    PubMed  Google Scholar 

  • Kaczmarek-Hájek K, Lörinczi É, Hausmann R, Nicke A (2012) Molecular and functional properties of P2X receptors—recent progress and persisting challenges. Purinergic Signal 8:375–417

    PubMed  PubMed Central  Google Scholar 

  • Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci U S A 98:1964–1969

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kimelberg HK (2005) Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50:389–397

    PubMed  Google Scholar 

  • Koyama Y, Sugimoto T, Shigenaga Y, Baba A, Iwata H (1991) A morphological study on glutamate-induced swelling of cultured astrocytes: involvement of calcium and chloride ion mechanisms. Neurosci Lett 124:235–238

    PubMed  CAS  Google Scholar 

  • Kriegler S, Chiu SY (1993) Calcium signaling of glial cells along mammalian axons. J Neurosci 13:4229–4245

    PubMed  CAS  Google Scholar 

  • Kristián T, Siesjö BK (1998) Calcium in ischemic cell death. Stroke 29:705–718

    PubMed  Google Scholar 

  • Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y (2011) Large-scale calcium waves traveling through astrocytic networks in vivo. J Neurosci 31:2607–2614

    PubMed  CAS  Google Scholar 

  • Kukley M, Capetillo-Zarate E, Dietrich D (2007) Vesicular glutamate release from axons in white matter. Nat Neurosci 10:311–320

    PubMed  CAS  Google Scholar 

  • Kullmann DM, Asztely F (1998) Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci 21:8–14

    PubMed  CAS  Google Scholar 

  • Kumagai H, Sacktor B, Filburn CR (1991) Purinergic regulation of cytosolic calcium and phosphoinositide metabolism in rat osteoblast-like osteosarcoma cells. J Bone Miner Res 6:697–708

    PubMed  CAS  Google Scholar 

  • Kuperman AS, Volpert WA, Okamoto M (1964) Release of adenine nucleotide from nerve axons. Nature 204:1000–1001

    PubMed  CAS  Google Scholar 

  • Largo C, Cuevas P, Herreras O (1996a) Is glia disfunction the initial cause of neuronal death in ischemic penumbra? Neurol Res 18:445–448

    PubMed  CAS  Google Scholar 

  • Largo C, Cuevas P, Somjen GG, Martin del Rio R, Herreras O (1996b) The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuron survival. J Neurosci 16:1219–1229

    PubMed  CAS  Google Scholar 

  • Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31:17–35

    PubMed  PubMed Central  Google Scholar 

  • Leary MC, Saver JL (2003) Annual incidence of first silent stroke in the United States: a preliminary estimate. Cerebrovasc Dis 16:280–285

    PubMed  Google Scholar 

  • Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shulman GI, Rothman DL (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lechleiter JD, Clapham DE (1992) Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69:283–294

    PubMed  CAS  Google Scholar 

  • Lechleiter J, Girard S, Peralta E, Clapham D (1991) Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252:123–126

    PubMed  CAS  Google Scholar 

  • Leis JA, Bekar LK, Walz W (2005) Potassium homeostasis in the ischemic brain. Glia 50:407–416

    PubMed  Google Scholar 

  • Li S, Stys PK (2000) Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci 20:1190–1198

    PubMed  CAS  Google Scholar 

  • Li S, Mealing GA, Morley P, Stys PK (1999) Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J Neurosci 19:RC16

    PubMed  CAS  Google Scholar 

  • Liang D, Bhatta S, Gerzanich V, Simard JM (2007) Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus 22:E2

    PubMed  PubMed Central  Google Scholar 

  • Lohman AW, Billaud M, Isakson BE (2012) Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res 95:269–280

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopes-Cardozo M, Larsson OM, Schousboe A (1986) Acetoacetate and glucose as lipid precursors and energy substrates in primary cultures of astrocytes and neurons from mouse cerebral cortex. J Neurochem 46:773–778

    PubMed  CAS  Google Scholar 

  • Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–1757

    PubMed  Google Scholar 

  • Lutz W, Sanderson W, Scherbov S (2008) The coming acceleration of global population ageing. Nature 451:716–719

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L (1996) Cellular mechanisms of brain energy metabolism. Relevance to functional brain imaging and to neurodegenerative disorders. Ann N Y Acad Sci 777:380–387

    PubMed  CAS  Google Scholar 

  • Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJ (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62:45–53

    PubMed  CAS  Google Scholar 

  • Mangia S, Simpson IA, Vannucci SJ, Carruthers A (2009) The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109(suppl 1):55–62

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martin M, Portais JC, Labouesse J, Canioni P, Merle M (1993) [1-13C]glucose metabolism in rat cerebellar granule cells and astrocytes in primary culture. Evaluation of flux parameters by 13C- and 1H-NMR spectroscopy. Eur J Biochem 217:617–625

    PubMed  CAS  Google Scholar 

  • Matsui K, Jahr C (2004) Differential control of synaptic and ectopic vesicular release of glutamate. J Neurosci 24:8932–8939

    PubMed  CAS  Google Scholar 

  • Mattson MP, Rychlik B (1990) Glia protect hippocampal neurons against excitatory amino acid-induced degeneration: involvement of fibroblast growth factor. Int J Dev Neurosci 8:399–415

    PubMed  CAS  Google Scholar 

  • Matyash V, Filippov V, Mohrhagen K, Kettenmann H (2001) Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol Cell Neurosci 18:664–670

    PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM (1994) Signal transduction by intramitochondrial Ca2+ in mammalian energy metabolism. NIPS 9:71–76

    CAS  Google Scholar 

  • McCormack JG, Halestrap AP, Denton PM (1990) Role of calcium ions regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  • McIntosh VJ, Lasley RD (2012) Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 17:21–33

    PubMed  CAS  Google Scholar 

  • Mehta B, Begum G, Joshi NB, Joshi PG (2008) Nitric oxide-mediated modulation of synaptic activity by astrocytic P2Y receptors. J Gen Physiol 132:339–349

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mei L, Du W, Gao W, Mei QB (2010) Purinergic signaling: a novel mechanism in immune surveillance. Acta Pharmacol Sin 31:1149–1153

    PubMed  CAS  Google Scholar 

  • Melani A, Turchi D, Vannucchi MG, Cipriani S, Gianfriddo M, Pedata F (2005) ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 47:442–448

    PubMed  CAS  Google Scholar 

  • Mergenthaler P, Dirnagl U, Meisel A (2004) Pathophysiology of stroke: lessons from animal models. Metab Brain Dis 19:151–167

    PubMed  CAS  Google Scholar 

  • Mies G, Iijima T, Hossmann KA (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4:709–711

    PubMed  CAS  Google Scholar 

  • Mitchell CS, Feng SS, Lee RH (2007) An analysis of glutamate spillover on the N-methyl-D-aspartate receptors at the cerebellar glomerulus. J Neural Eng 4:276–282

    PubMed  Google Scholar 

  • Muir D, Berl S, Clarke DD (1986) Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res 380:336–340

    PubMed  CAS  Google Scholar 

  • Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    PubMed  CAS  Google Scholar 

  • Nedergaard M (1996) Spreading depression as a contributor to ischemic brain damage. Adv Neurol 71:75–83, discussion 83–84

    PubMed  CAS  Google Scholar 

  • Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–286

    PubMed  Google Scholar 

  • Nedergaard M, Ransom B, Goldman S (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    PubMed  CAS  Google Scholar 

  • Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275:844–847

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ochi T (1995) Hydrogen peroxide increases the activity of gamma-glutamylcysteine synthetase in cultured Chinese hamster V79 cells. Arch Toxicol 70:96–103

    PubMed  CAS  Google Scholar 

  • Ohta K, Graf R, Rosner G, Heiss WD (2001) Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats. Stroke 32:535–543

    PubMed  CAS  Google Scholar 

  • Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926

    PubMed  CAS  Google Scholar 

  • Papadopoulos MC, Koumenis IL, Dugan LL, Giffard RG (1997) Vulnerability to glucose deprivation injury correlates with glutathione levels in astrocytes. Brain Res 748:151–156

    PubMed  CAS  Google Scholar 

  • Paschen W, Oláh L, Mies G (2000) Effect of transient focal ischemia of mouse brain on energy state and NAD levels. J Neurochem 75:1675–1680

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317:1083–1086

    PubMed  CAS  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    PubMed  CAS  Google Scholar 

  • Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pochynyuk O, Bugaj V, Vandewalle A, Stockand JD (2008) Purinergic control of apical plasma membrane PI(4,5)P2 levels sets ENaC activity in principal cells. Am J Physiol Renal Physiol 294:F38–F46

    PubMed  CAS  Google Scholar 

  • Porras O, Loaiza A, Barros LF (2004) Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J Neurosci 24:9669–9673

    PubMed  CAS  Google Scholar 

  • Porter J, McCarthy K (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081

    PubMed  CAS  Google Scholar 

  • Porter J, McCarthy K (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455

    PubMed  CAS  Google Scholar 

  • Proudfoot AT, Bradberry SM, Vale JA (2006) Sodium fluoroacetate poisoning. Toxicol Rev 25:213–219

    PubMed  CAS  Google Scholar 

  • Qu H, Haberg A, Haraldseth O, Unsgard G, Sonnewald U (2000) (13)C MR spectroscopy study of lactate as substrate for rat brain. Dev Neurosci 22:429–436

    PubMed  CAS  Google Scholar 

  • Quesada O, Ordaz B, Morales-Mulia S, Pasantes-Morales H (1999) Influence of CA2+ on K+ efflux during regulatory volume decrease in cultured astrocytes. J Neurosci Res 57:350–358

    PubMed  CAS  Google Scholar 

  • Raps SP, Lai JC, Hertz L, Cooper AJ (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res 493:398–401

    PubMed  CAS  Google Scholar 

  • Rieger A, Deitmer JW, Lohr C (2007) Axon-glia communication evokes calcium signaling in olfactory ensheathing cells of the developing olfactory bulb. Glia 55:352–359

    PubMed  Google Scholar 

  • Risher WC, Ard D, Yuan J, Kirov SA (2010) Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra. J Neurosci 30:9859–9868

    PubMed  CAS  PubMed Central  Google Scholar 

  • Risher WC, Lee MR, Fomitcheva IV, Hess DC, Kirov SA (2011) Dibucaine mitigates spreading depolarization in human neocortical slices and prevents acute dendritic injury in the ischemic rodent neocortex. PLoS One 6:e22351

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodriguez-Rodriguez P, Almeida A, Bolanos JP (2013) Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochem Int 62:750–756

    PubMed  CAS  Google Scholar 

  • Rosenblum WI (2007) Cytotoxic edema: monitoring its magnitude and contribution to brain swelling. J Neuropathol Exp Neurol 66:771–778

    PubMed  Google Scholar 

  • Rumney RMH, Wang N, Agrawal A, Gartland A (2012) Purinergic signalling in bone. Front Endocrinol 3:116

    Google Scholar 

  • Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676

    PubMed  CAS  Google Scholar 

  • Sagara J, Makino N, Bannai S (1996) Glutathione efflux from cultured astrocytes. J Neurochem 66:1876–1881

    PubMed  CAS  Google Scholar 

  • Schlaug G, Benfield A, Baird AE, Siewert B, Lövblad KO, Parker RA, Edelman RR, Warach S (1999) The ischemic penumbra operationally defined by diffusion and perfusion MRI. Neurology 53:1528–1537

    PubMed  CAS  Google Scholar 

  • Schofl C, Cuthbertson KS, Walsh CA, Mayne C, Cobbold P, von zur Muhlen A, Hesch RD, Gallagher JA (1992) Evidence for P2-purinoceptors on human osteoblast-like cells. J Bone Miner Res 7:485–491

    PubMed  CAS  Google Scholar 

  • Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69:423–426

    PubMed  CAS  Google Scholar 

  • Silva AC, Lee SP, Iadecola C, Kim SG (2000) Early temporal characteristics of cerebral blood flow and deoxyhemoglobin changes during somatosensory stimulation. J Cereb Blood Flow Metab 20:201–206

    PubMed  CAS  Google Scholar 

  • Silver IA, Erecinska M (1997) Energetic demands of the Na+/K+ ATPase in mammalian astrocytes. Glia 21:35–45

    PubMed  CAS  Google Scholar 

  • Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262

    PubMed  CAS  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    PubMed  CAS  PubMed Central  Google Scholar 

  • Singhal A, Lo E, Dalkara T, Moskowitz M (2006) Ischemic stroke: basic pathophysiology and neuroprotective strategies. In: Gonzalez RG, Hirsch JA, Koroshetz WJ, Lev MH, Schaefer PW (eds) Acute ischemic stroke. Springer, Berlin, pp 1–7

    Google Scholar 

  • Sonnewald U, Westergaard N, Schousboe A (1997) Glutamate transport and metabolism in astrocytes. Glia 21:56–63

    PubMed  CAS  Google Scholar 

  • Stone E, Hoffman K, Kavanaugh M (2012) Identifying neurotransmitter spill-over in hippocampal field recordings. Math Biosci 240:169–186

    PubMed  CAS  PubMed Central  Google Scholar 

  • Strong AJ, Dardis R (2005) Depolarisation phenomena in traumatic and ischaemic brain injury. Adv Tech Stand Neurosurg 30:3–49

    PubMed  CAS  Google Scholar 

  • Strong K, Mathers C, Bonita R (2007) Preventing stroke: saving lives around the world. Lancet Neurol 6:182–187

    PubMed  Google Scholar 

  • Stuart CA, Ross IR, Howell ME, McCurry MP, Wood TG, Ceci JD, Kennel SJ, Wall J (2011) Brain glucose transporter (Glut3) haploinsufficiency does not impair mouse brain glucose uptake. Brain Res 1384:15–22

    Google Scholar 

  • Suzuki M, Kurata M (1992) Effects of ATP level on glutathione regeneration in rabbit and guinea-pig erythrocytes. Comp Biochem Physiol B 103:859–862

    PubMed  CAS  Google Scholar 

  • Swann JW, Al-Noori S, Jiang M, Lee CL (2000) Spine loss and other dendritic abnormalities in epilepsy. Hippocampus 10:617–625

    PubMed  CAS  Google Scholar 

  • Thyssen A, Hirnet D, Wolburg H, Schmalzing G, Deitmer JW, Lohr C (2010) Ectopic vesicular neurotransmitter release along sensory axons mediates neurovascular coupling via glial calcium signaling. Proc Natl Acad Sci U S A 107:15258–15263

    PubMed  CAS  PubMed Central  Google Scholar 

  • Toney GM, Vallon V, Stockand JD (2012) Intrinsic control of sodium excretion in the distal nephron by inhibitory purinergic regulation of the epithelial Na(+) channel. Curr Opin Nephrol Hypertens 21:52–60

    PubMed  CAS  PubMed Central  Google Scholar 

  • Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129:1021–1029

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352

    PubMed  CAS  Google Scholar 

  • Waldo GL, Harden TK (2004) Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol 65:426–436

    PubMed  CAS  Google Scholar 

  • Wang XF, Cynader MS (2000) Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem 74:1434–1442

    PubMed  CAS  Google Scholar 

  • Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels JL, De Vivo DC (2006) A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet 15:1169–1179

    PubMed  CAS  Google Scholar 

  • Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233

    PubMed  CAS  Google Scholar 

  • Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504

    PubMed  CAS  Google Scholar 

  • Watts LT, Lechleiter JD (2008) The impact of astrocyte mitochondrial metabolism on neuroprotection during aging. In: Parpura V, Haydon PG (eds) Astrocytes in (patho) physiology of the nervous system. Springer, Boston, MA, pp 569–590

    Google Scholar 

  • Watts LT, Sprague S, Zheng W, Garling RJ, Jimenez D, Digicaylioglu M, Lechleiter JD (2013) Purinergic 2Y1 receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model. J Neurotrauma 30:55–66

    Google Scholar 

  • Woitzik J, Back T, Thome C (2008) Flow-dependent versus spreading-like impairment of brain tissue integrity during focal cerebral ischemia and its consequences for neuroprotective strategies. Front Biosci 13:1500–1506

    PubMed  CAS  Google Scholar 

  • Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB (1991) Probability of stroke: a risk profile from the Framingham Study. Stroke 22:312–318

    PubMed  CAS  Google Scholar 

  • Wu J, Holstein JD, Upadhyay G, Lin DT, Conway S, Muller E, Lechleiter JD (2007) Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging. J Neurosci 27:6510–6520

    PubMed  CAS  Google Scholar 

  • Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7485

    PubMed  CAS  Google Scholar 

  • Yamanishi S, Katsumura K, Kobayashi T, Puro DG (2006) Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol Heart Circ Physiol 290:H925–H934

    PubMed  CAS  Google Scholar 

  • Yamashita T, Kamiya T, Deguchi K, Inaba T, Zhang H, Shang J, Miyazaki K, Ohtsuka A, Katayama Y, Abe K (2009) Dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain. J Cereb Blood Flow Metab 29:715–725

    PubMed  CAS  Google Scholar 

  • Zheng W, Watts LT, Holstein DM, Prajapati SI, Keller C, Grass EH, Walter CA, Lechleiter JD (2010) Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria. PLoS One 5:e14401

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng W, Talley Watts L, Holstein DM, Wewer J, Lechleiter JD (2013) P2Y1R-initiated, IP3R-dependent stimulation of astrocyte mitochondrial metabolism reduces and partially reverses ischemic neuronal damage in mouse. J Cereb Blood Flow Metab 33:600–611

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10:321–330

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zonta M, Angulo M, Gobbo S, Rosengarten B, Hossmann K, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    PubMed  CAS  Google Scholar 

  • Zorowitz R, Baerga E, Cuccurullo S (2004) Types of stroke. In: Cuccurullo S (ed) Physical medicine and rehabilitation board review. Demos Medical Publishing, New York

    Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Lechleiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sayre, N.L., Chen, Y., Sifuentes, M., Stoveken, B., Lechleiter, J.D. (2014). Purinergic Receptor Stimulation Decreases Ischemic Brain Damage by Energizing Astrocyte Mitochondria. In: Parpura, V., Schousboe, A., Verkhratsky, A. (eds) Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain. Advances in Neurobiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-08894-5_7

Download citation

Publish with us

Policies and ethics