Skip to main content

Muse Cells

  • Reference work entry
  • First Online:
Cell Engineering and Regeneration

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 529 Accesses

Abstract

Multilineage-differentiating stress-enduring (Muse) cells were first reported in 2010. Since then, multiple groups have elucidated their unique properties. Muse cells are non-tumorigenic endogenous pluripotent-like stem cells that express pluripotency genes; are able to differentiate into triploblastic cells from a single cell and to self-renew; can be isolated as cells positive for a pluripotent stem cell surface marker, stage-specific embryonic antigen-3, from the connective tissue of various organs, as well as the bone marrow and peripheral blood; preferentially migrate to damaged tissue after systemic administration; and spontaneously differentiate into tissue-compatible cells after homing, which enables them to deliver structural and functional recovery with few safety concerns. These properties of Muse cells enable therapeutic effects in only a few simple steps, namely, collection from easily accessible tissue sources, expansion, and administration by intravenous injection. Because Muse cells are naturally existing stem cells with unique reparative functions, they may furnish a novel therapeutic concept compatible with the body’s natural repair system, “reparative medicine,” that does not rely on introducing or manipulating artificial genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alessio N, Ozcan S, Tatsumi K, Murat A, Peluso G, Dezawa M, Galderisi U (2017) The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell Cycle 16(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R (2010) Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol 67(1):41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerman I, Luis TC, Singbrant S, Lo Celso C, Mendez-Ferrer S (2017) The evolving view of the hematopoietic stem cell niche. Exp Hematol. https://doi.org/10.1016/j.exphem.2017.01.008

  • Clapp C, Portt L, Khoury C, Sheibani S, Norman G, Ebner P, Eid R, Vali H, Mandato CA, Madeo F, Greenwood MT (2012) 14-3-3 protects against stress-induced apoptosis. Cell Death Dis 3:e348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dezawa M (2016) Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration. Cell Transplant 25(5):849–861

    Article  PubMed  Google Scholar 

  • Duarte S, Baber J, Fujii T, Coito AJ (2015) Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol 44–46:147–156

    Article  PubMed  Google Scholar 

  • Faherty S, Fitzgerald A, Keohan M, Quinlan LR (2007) Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct4 expression: the role of the cAMP/PKA pathway. In Vitro Cell Dev Biol Anim 43(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Galderisi U, Giordano A (2014) The gap between the physiological and therapeutic roles of mesenchymal stem cells. Med Res Rev 34(5):1100–1126

    Article  CAS  PubMed  Google Scholar 

  • Gardino AK, Yaffe MB (2011) 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol 22(7):688–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimeno ML, Fuertes F, Barcala Tabarrozzi AE, Attorressi AI, Cucchiani R, Corrales L, Oliveira TC, Sogayar MC, Labriola L, Dewey RA, Perone MJ (2017) Pluripotent nontumorigenic adipose tissue-derived Muse cells have immunomodulatory capacity mediated by transforming growth factor-beta1. Stem Cells Transl Med 6(1):161–173

    Article  CAS  PubMed  Google Scholar 

  • Heneidi S, Simerman AA, Keller E, Singh P, Li X, Dumesic DA, Chazenbalk G (2013) Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS One 8(6):e64752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho TC, Chen SL, Wu JY, Ho MY, Chen LJ, Hsieh JW, Cheng HC, Tsao YP (2013) PEDF promotes self-renewal of limbal stem cell and accelerates corneal epithelial wound healing. Stem Cells 31(9):1775–1784

    Article  CAS  PubMed  Google Scholar 

  • Hong HS, Lee J, Lee E, Kwon YS, Lee E, Ahn W, Jiang MH, Kim JC, Son Y (2009) A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med 15(4):425–435

    Article  CAS  PubMed  Google Scholar 

  • Hori E, Hayakawa Y, Hayashi T, Hori S, Okamoto S, Shibata T, Kubo M, Horie Y, Sasahara M, Kuroda S (2016) Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovasc Dis 25(6):1473–1481

    Article  PubMed  Google Scholar 

  • Iseki M, Kushida Y, Wakao S, Akimoto T, Mizuma M, Motoi F, Asada R, Shimizu S, Unno M, Chazenbalk G, Dezawa M (2017) Muse cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis. Cell Transplant 26(5):821–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K, Endo F, Kume K, Takahara T, Nitta H, Tsuda H, Dezawa M, Nishizuka SS (2015) A distinct subpopulation of bone marrow mesenchymal stem cells, Muse cells, directly commit to the replacement of liver components. Am J Transplant. https://doi.org/10.1111/ajt.13537

  • Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H, Doi K, Kanayama K, Feng J, Mashiko T, Kurisaki A, Yoshimura K (2015) Therapeutic potential of adipose-derived SSEA-3-positive Muse cells for treating diabetic skin ulcers. Stem Cells Transl Med 4(2):146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, Shigemoto T, Nabeshima Y, Nakahata T, Fujiyoshi Y, Dezawa M (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A 107(19):8639–8643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 8(7):1391–1415

    Article  PubMed  Google Scholar 

  • Ma HC, Shi XL, Ren HZ, Yuan XW, Ding YT (2014) Targeted migration of mesenchymal stem cells modified with CXCR4 to acute failing liver improves liver regeneration. World J Gastroenterol 20(40):14884–14894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mineda K, Feng J, Ishimine H, Takada H, Doi K, Kuno S, Kinoshita K, Kanayama K, Kato H, Mashiko T, Hashimoto I, Nakanishi H, Kurisaki A, Yoshimura K (2015) Therapeutic potential of human adipose-derived stem/stromal cell microspheroids prepared by three-dimensional culture in non-cross-linked hyaluronic acid gel. Stem Cells Transl Med 4(12):1511–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S, Chazenbalk G, Aiba S, Dezawa M (2014) Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev 23(7):717–728

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Takagi Y, Harada J, Topalkara K, Wang Y, Sims JR, Zheng G, Huang P, Ling Y, Scadden DT, Moskowitz MA, Cheng T (2009) p27Kip1 constrains proliferation of neural progenitor cells in adult brain under homeostatic and ischemic conditions. Stem Cells 27(4):920–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhard J, Brosicke N, Theocharidis U, Faissner A (2016) The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int J Biochem Cell Biol 81(Pt A):174–183

    Article  CAS  PubMed  Google Scholar 

  • Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24(5):1254–1264

    Article  CAS  PubMed  Google Scholar 

  • Song J, Finnerty CC, Herndon DN, Boehning D, Jeschke MG (2009) Severe burn-induced endoplasmic reticulum stress and hepatic damage in mice. Mol Med 15(9–10):316–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuchiyama K, Wakao S, Kuroda Y, Ogura F, Nojima M, Sawaya N, Yamasaki K, Aiba S, Dezawa M (2013) Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (Muse) cells, distinct stem cells in human fibroblasts. J Invest Dermatol 133(10):2425–2435

    Article  CAS  PubMed  Google Scholar 

  • Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, Sakata H, Matsuzaka Y, Mushiake H, Tominaga T, Borlongan CV, Dezawa M (2016) Transplantation of unique subpopulation of fibroblasts, Muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells 34(1):160–173

    Article  CAS  PubMed  Google Scholar 

  • Uchida H, Niizuma K, Kushida Y, Wakao S, Tominaga T, Borlongan CV, Dezawa M (2017) Human Muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke 48(2):428–435

    Article  PubMed  Google Scholar 

  • Uchida N, Kushida Y, Kitada M, Wakao S, Kumagai N, Kuroda Y, Kondo Y, Hirohara Y, Kure H, Chazenbalk G, Dezawa M (2017) Beneficial effects of systemically administered human Muse cells in murine adriamycin nephropathy. J Am Soc Nephrol 28(10):2946–2960

    Google Scholar 

  • Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, Tanimura Y, Tsuchiyama K, Kikuchi T, Goda M, Nakahata T, Fujiyoshi Y, Dezawa M (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci U S A 108(24):9875–9880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Kuroda Y, Morita T, Shichinohe H, Houkin K, Dezawa M, Kuroda S (2015) Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One 10(3):e0116009

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Dezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dezawa, M. (2020). Muse Cells. In: Gimble, J., Marolt Presen, D., Oreffo, R., Wolbank, S., Redl, H. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-08831-0_63

Download citation

Publish with us

Policies and ethics