Skip to main content

Invariance of DC and RF Characteristics of Mechanically Flexible CMOS Technology on Plastic

  • Chapter
  • First Online:
Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting

Abstract

Combining the electrical performance of modern high frequency silicon nanoelectronics with additional properties of mechanical flexibility and stretchability continuously arouses a sustained interest for its utility in a broad range of space-weight-and-power (SWAP) constrained applications related to e.g. healthcare, structure monitoring, sport, telecommunication, security chips. However, the fabrication of transistors and circuits featuring high electrical performance independently of their deformation state (i.e. flat, folded, or stretched for instance) still constitutes an unresolved challenge. Although many different techniques based on the transfer of high mobility nanostructures or patterned thin-films onto flexible plastic foils constitute possible solutions with their respective advantages and weaknesses, little attention has been paid so far to the thinning of mature rigid technology in the ultra-thin regime followed by transfer-bonding onto a flexible handler. The basic idea developed in this chapter is to combine the advantages of a mature radio-frequency (RF) SOI-CMOS technology with mechanical flexibility provided by thinning. Moreover, performance invariance of flexible systems is another challenge requiring a careful inspection to retain function and to guarantee operation stability. A method based on silicon thinning, transfer-bonding and neutral plane engineering is therefore proposed to produce flexible devices and circuits combining high electrical and mechanical performance, in addition to functional invariance upon deformation. In this chapter, it is demonstrated that SOI MOSFETs featuring high frequency, low noise and low power characteristics can withstand curvature radii down to the centimetre range without noticeable variation of their static and high frequency performance. The thinning and transfer-bonding of rigid technology is performed using successive chemical–mechanical lapping, wet etching and dry cleaning steps followed by room temperature bonding. Static, high frequency and noise characterization completely validate this process. Consistently with mechanical modelling, electrical measurements in bent configurations confirm the invariance of electrical performance upon flexure. Beyond the in-depth analysis of SOI-MOSFETs, CMOS circuits have been characterized to demonstrate that this technology paves the way to flexible electronic applications requiring complexity and frequency performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chimot, N., Derycke, V., Goffman, M.F., Bourgoin, J.P., Happy, H., Dambrine, G.: Gigahertz frequency flexible carbon nanotube transistors. Appl. Phys. Lett. 91, 153111 (2007)

    Article  Google Scholar 

  2. Vaillancourt, J., Zhang, H., Vasinajindakaw, P., Xia, H., Lu, X., Han, X., Jan-zen, D.C., Shih, W.-S., Jones, C.S., Stroder, M., Chen, M.Y., Subbaraman, H., Chen, R.T., Berger, U., Renn, M.: All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz. Appl. Phys. Lett. 93, 243301 (2008)

    Article  Google Scholar 

  3. Sun, L., Qin, G., Seo, J.-H., Celler, G.K., Zhou, W., Ma, Z.: 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6, 2553–2557 (2010)

    Article  Google Scholar 

  4. Yuan, H.-C., Celler, G.K., Ma, Z.: 7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate. J. Appl. Phys. 102, 034501 (2007)

    Article  Google Scholar 

  5. Sun, Y., Menard, E., Rogers, J.A., Kim, H.-S., Kim, S., Chen, G., Adesida, I., Dettmer, R., Cortez, R., Tewksbury, A.: Gigahertz operation in flexible transistors on plastic substrates. Appl. Phys. Lett. 88, 183509 (2006)

    Article  Google Scholar 

  6. Cherenack, K.H., Hekmatshoar, B., Sturm, J.C., Wagner, S.: Self-aligned amorphous silicon thin-film transistors fabricated on clear plastic at 300 IEEE Trans. Electron Dev. 57, 2381–2389 (2010)

    Article  Google Scholar 

  7. Kao, H.L., Chin, A., Hung, B.F., Lee, C.F., Lai, J.M., McAlister, S.P., Samudra, G.S., Yoo, W.J., Chi, C.C.: Low noise RF MOSFETs on flexible plastic substrates. IEEE Electron Dev. Lett. 26, 489–491 (2005)

    Article  Google Scholar 

  8. Kao, H.L., Chin, A., Liao, C.C., Tseng, Y.Y., McAlister, S.P., Chi, C.C.: DC-RF performance improvement for strained 0.13 μm MOSFETs mounted on a flexible plastic substrate. In: IEEE MTT-S International Microwave Symposium Digest 2006, pp. 2043–2046 (2006)

    Google Scholar 

  9. Vaillancourt, J., Lu, X., Han, X., Janzen, D.C.: High-speed thin-film transistor on flexible substrate fabricated at room temperature. Electron. Lett. 42, 1365–1367 (2006)

    Article  Google Scholar 

  10. Han, X., Janzen, D.C., Vaillancourt, J., Lu, X.: Printable high-speed thin-film transistor on flexible substrate using carbon nanotube solution. Micro Nano Lett. 2, 96–98 (2007)

    Article  Google Scholar 

  11. Ahn, J.-H., Kim, H.-S., Lee, K.J., Zhu, Z., Menard, E., Nuzzo, R.G., Rogers, J.A.: High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates. IEEE Electron Dev. Lett. 27, 460–462 (2006)

    Article  Google Scholar 

  12. Yuan, H.-C., Ma, Z.: Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate. Appl. Phys. Lett. 89, 212105 (2006)

    Article  Google Scholar 

  13. Sekitani, T., Noguchi, Y., Zschieschang, U., Klauk, H., Someya, T.: Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc. Natl. Acad. Sci. of U S A 105, 4976–4980 (2008)

    Article  Google Scholar 

  14. Defrance, N., Lecourt, F., Douvry, Y., Lesecq, M., Hoel, V., Lecavelier Des Etangs-Levallois, A., Cordier, Y., Ebongue, A., De Jaeger, J.C.: Fabrication, characterization, and physical analysis of AlGaN/GaN HEMTs on flexible substrates. IEEE Trans. Electron Dev. 60, 1054–1059 (2013)

    Google Scholar 

  15. Sire, C., Ardiaca, F., Lepilliet, S., Seo, J.W.T., Hersam, M.C., Dambrine, G., Happy, H., Derycke, V.: Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett. 12, 1184–1188 (2012)

    Article  Google Scholar 

  16. Lesecq, M., Hoel, V., Lecavelier des Etangs-Levallois, A., Pichonat, E., Douvry, Y., De Jaeger, J.C.: High performance of AlGaN/GaN HEMTs reported on adhesive flexible tape. IEEE Electron Dev. Lett. 32, 143–145 (2011)

    Google Scholar 

  17. Shi, J., Wichmann, N., Roelens, Y., Bollaert, S.: Microwave performance of 100 nm-gate In0.53Ga0.47As/In0.52Al0.48As high electron mobility transistors on plastic flexible substrate. Appl. Phys. Lett. 99, 203505 (2011)

    Article  Google Scholar 

  18. Lecavelier des Etangs-Levallois, A., Dubois, E., Lesecq, M., Danneville, F., Poulain, L., Tagro, Y., Lepilliet, S., Gloria, D., Raynaud, C., Troadec, D.: 150-GHz RF SOI-CMOS technology in ultrathin regime on organic substrate. IEEE Electron Dev. Lett. 32, 1510–1512 (2011)

    Google Scholar 

  19. Tagro, Y., Lecavelier des Etangs-Levallois, A., Poulain, L., Lepilliet, S., Gloria, D., Raynaud, C., Dubois, E., Danneville, F.: High frequency noise potentialities of reported CMOS 65 nm SOI technology on flexible substrate. In: Silicon Monolithic Integrated Circuits RF System SIRF 2012 IEEE 12th Topical Meeting 2012, pp. 89–92 (2012)

    Google Scholar 

  20. Lecavelier des Etangs-Levallois, A., Chen, Z., Lesecq, M., Lepilliet, S., Tagro, Y., Danneville, F., Robillard, J.-F., Hoel, V., Troadec, D., Gloria, D., Raynaud, C., Ratajczak, J., Dubois, E.: A converging route towards very high frequency, mechanically flexible and performance stable integrated electronics. J. Appl. Phys. 113, 153701 (2013)

    Google Scholar 

  21. Lecavelier des Etangs-Levallois, A., Lesecq, M., Danneville, F., Tagro, Y., Lepilliet, S., Hoel, V., Troadec, D., Gloria, D., Raynaud, C., Dubois, E.: Radio-frequency and low noise characteristics of SOI technology on plastic for flexible electronics. Solid-State Electron, in press (2013)

    Google Scholar 

  22. Sekitani, T., Zschieschang, U., Klauk, H., Someya, T.: Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 9, 1015–1022 (2010)

    Article  Google Scholar 

  23. Sekitani, T., Iba, S., Kato, Y., Noguchi, Y., Someya, T., Sakurai, T.: Ultraflexible organic field-effect transistors embedded at a neutral strain position. Appl. Phys. Lett. 87, 173502 (2005)

    Article  Google Scholar 

  24. Uno, M., Nakayama, K., Soeda, J., Hirose, Y., Miwa, K., Uemura, T., Nakao, A., Takimiya, K., Takeya, J.: High-speed flexible organic field-effect transistors with a 3D structure. Adv. Mater. 23, 3047–3051 (2011)

    Article  Google Scholar 

  25. Schön, J., Kloc, C., Batlogg, B.: On the intrinsic limits of pentacene field-effect transistors. Org. Electron. Phys. Mater. Appl. 1, 57–64 (2000)

    Google Scholar 

  26. Halonen, E., Kaija, K., Mantysalo, M., Kemppainen, A., Osterbacka, R., Bjorklund, N.: Evaluation of printed electronics manufacturing line with sensor platform application. In: European Microelectronics and Packaging Conference (EMPC) 2009 Europe, pp. 1–8 (2009)

    Google Scholar 

  27. Menard, E., Lee, K.J., Khang, D.-Y., Nuzzo, R.G., Rogers, J.A.: A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 84, 5398–5400 (2004)

    Article  Google Scholar 

  28. Wang, C., Chien, J.-C., Fang, H., Takei, K., Nah, J., Plis, E., Krishna, S., Niknejad, A.M., Javey, A.: Self-aligned, extremely high frequency III-V metal-oxide-semiconductor field-effect transistors on rigid and flexible substrates. Nano Lett. 12, 4140–4145 (2012)

    Article  Google Scholar 

  29. Ko, H., Takei, K., Kapadia, R., Chuang, S., Fang, H., Leu, P.W., Ganapathi, K., Plis, E., Kim, H.S., Chen, S.-Y., Madsen, M., Ford, A.C., Chueh, Y.-L., Krishna, S., Salahuddin, S., Javey, A.: Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468, 286–289 (2010)

    Article  Google Scholar 

  30. Sun, Y., Kim, S., Adesida, I., Rogers, J.A.: Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates. Appl. Phys. Lett. 87, 083501 (2005)

    Article  Google Scholar 

  31. Colinge, J.-P.: Silicon-on-Insulator Technology: Materials to VLSI. Springer, Berlin (1997)

    Google Scholar 

  32. Celler, G.K., Cristoloveanu, S.: Frontiers of silicon-on-insulator. J. Appl. Phys. 93, 4955–4978 (2003)

    Article  Google Scholar 

  33. Pelloie, J.L., Auberton-Hervé, A.: A new generation of IC processing: low-power, high-performance SOI CMOS. Solid State Technol. 44, 63 (2001)

    Google Scholar 

  34. Martineau, B., Cathelin, A., Danneville, F., Kaiser, A., Dambrine, G., Lepilliet, S., Gianesello, F., Belot, D.: 80 GHz low noise amplifiers in 65 nm CMOS SOI. In: 33rd European Solid State Circuits Conference, pp. 348–351 (2007)

    Google Scholar 

  35. Raynaud, C., Haendler, S., Guegan, G., Gianesello, F., Martineau, B., Touret, P., Planes, N.: 65 nm low power (LP) SOI technology on high resistivity (HR) substrate for WLAN and Mmwave SOCs. ECS Trans. 19, 257–264 (2009)

    Article  Google Scholar 

  36. Wang, P.W.: Industrial challenges for thin wafer manufacturing. In: Fourth World Conference on Photovoltaic Energy Conversion, pp. 1179–1182 (2006)

    Google Scholar 

  37. McLellan, N., Fan, N., Liu, S., Lau, K., Wu, J.: Effects of wafer thinning condition on the roughness, morphology and fracture strength of silicon die. J. Electron. Packag. 126, 110–114 (2004)

    Article  Google Scholar 

  38. Jiun, H.H., Ahmad, I., Jalar, A., Omar, G.: Effect of wafer thinning methods towards fracture strength and topography of silicon die. Microelectron. Reliab. 46, 836–845 (2006)

    Article  Google Scholar 

  39. Robbins, H., Schwartz, B.: Chemical etching of silicon II. J. Electrochem. Soc. 107, 108–111 (1960)

    Article  Google Scholar 

  40. Roman, B., Bico, J.: Elasto-capillarity: deforming an elastic structure with a liquid droplet. J. Phys.: Condens. Matter 22, 493101 (2010)

    Google Scholar 

  41. Smith, C.S.: Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42–49 (1954)

    Article  Google Scholar 

  42. Kanda, Y.: A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Dev. 29, 64–70 (1982)

    Article  Google Scholar 

  43. Haugerud, B.M., Bosworth, L.A., Belford, R.E.: Mechanically induced strain enhancement of metal–oxide–semiconductor field effect transistors. J. Appl. Phys. 94, 4102–4107 (2003)

    Article  Google Scholar 

  44. Maikap, S., Yu, C.-Y., Jan, S.R., Lee, M.H., Liu, C.W.: Mechanically strained strained-Si NMOSFETs. IEEE Electron Dev. Lett. 25, 40–42 (2004)

    Article  Google Scholar 

  45. Sun, Y., Thompson, S.E., Nishida, T.: Strain Effect in Semiconductors: Theory and Device Applications. Springer, New York (2009)

    Google Scholar 

  46. Rochette, F.: Etude et caractérisation de l’influence des contraintes mécaniques sur les propriétés du transport électronique dans les architectures MOS avancées. Ph.D. Thesis Institut National Polytechnique de Grenoble – INPG (2008)

    Google Scholar 

  47. Guillaume, T.: Influence des contraintes mécaniques non-intentionnelles sur les performances des transistors MOS à canaux ultra-courts. Ph.D. Thesis Institut National Polytechnique de Grenoble INPG (2005)

    Google Scholar 

  48. Ghani, T., Armstrong, M., Auth, C., Bost, M., Charvat, P., Glass, G., Hoffmann, T., Johnson, K., Kenyon, C., Klaus, J., McIntyre, B., Mistry, K., Murthy, A., Sandford, J., Silberstein, M., Sivakumar, S., Smith, P., Zawadzki, K., Thompson, S., Bohr, M.: A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. In: International Electron Devices Meeting IEDM 03, Technical Digest, 11.6.1–11.6.3 (2003)

    Google Scholar 

  49. Thompson, S.E., Armstrong, M., Auth, C., Cea, S., Chau, R., Glass, G., Hoffman, T., Klaus, J., Ma, Z., Mcintyre, B., Murthy, A., Obradovic, B., Shifren, L., Sivakumar, S., Tyagi, S., Ghani, T., Mistry, K., Bohr, M., El-Mansy, Y.: A logic nanotechnology featuring strained-silicon. IEEE Electron Dev. Lett. 25, 191 (2004)

    Article  Google Scholar 

  50. Skotnicki, T., Fenouillet-Beranger, C., Gallon, C., Buf, F., Monfray, S., Payet, F., Pouydebasque, A., Szczap, M., Farcy, A., Arnaud, F., Clerc, S., Sellier, M., Cathignol, A., Schoellkopf, J.-P., Perea, E., Ferrant, R., Mingam, H.: Innovative materials, devices, and CMOS technologies for low-power mobile multimedia. IEEE Trans. Electron Dev. 55, 96–130 (2008)

    Article  Google Scholar 

  51. Chaboche, J.L., Lemaître, J., Benallal, A., Desmorat, R.: Mécanique Des Matériaux Solides, 3rd edn. Dunod, Paris (2009)

    Google Scholar 

  52. Zhao, W., He, J., Belford, R.E., Wernersson, L.-E., Seabaugh, A.: Partially depleted SOI MOSFETs under uniaxial tensile strain. IEEE Trans. Electron Dev. 51, 317–323 (2004)

    Article  Google Scholar 

  53. Kim, D.H., Ahn, J.-H., Choi, W.M., Kim, H.-S., Kim, T.-H., Song, J., Huang, Y.Y., Liu, Z., Lu, C., Rogers, J.A.: Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    Article  Google Scholar 

  54. Besson, J., Cailletaud, G., Chaboche, J.-L., Forest, S.: Non-Linear Mechanics of Materials. Springer, Dodrecht (2010)

    Google Scholar 

  55. Garrigues, J.: Fondements de La Mécanique Des Milieux Continus. Hermes Lavoisier (2007)

    Google Scholar 

  56. Canali, C., Ferla, F., Morten, B., Taroni, A.: Piezoresistivity effects in MOSFET useful for pressure transducers. J. Phys. Appl. Phys. 12, 1973–1983 (1979)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the ST-IEMN Common Laboratory and by the region Nord-Pas-de-Calais and FEDER through the CPER-CIA project. It also contributes to the scientific and technological program of the LEAF EQUIPEX project (ANR-11-355 EQPX-0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Dubois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lecavelier des Etangs-Levallois, A. et al. (2014). Invariance of DC and RF Characteristics of Mechanically Flexible CMOS Technology on Plastic. In: Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D. (eds) Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08804-4_5

Download citation

Publish with us

Policies and ethics