Skip to main content

The Lebesgue Constant for Sinc Approximations

  • Chapter
  • First Online:
New Perspectives on Approximation and Sampling Theory

Abstract

Let Λ n denote the Lebesgue constant for Sinc approximation using n consecutive terms of the Sinc expansion of a function f. In this contribution we derive explicit values of a and b and the expression \(\varLambda_{n} = a\,\log (n) + b + \mathcal{O}(1/n^{2})\). We also provide graphic, illustrations of Lebesgue functions and Lebesgue constants for polynomial and Sinc approximations. These enable novel insights into the stability of these approximations in computation.

In honor of Paul Butzer’s 85th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematical Series. Dover Publications, New York (1964)

    MATH  Google Scholar 

  2. Bernstein, S.: Sur la limitation des valeurs d’un polynôme P(x) de degré n sur tout un segment par ses valeurs en (n + 1) points du segment. Izv. Akad. Nauk SSSR 7, 1025–1050 (1931)

    Google Scholar 

  3. Berrut, J.-P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15, 1–16 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berrut, J.-P.: Barycentric formulae for Cardinal (SINC-)interpolants. Numer. Math. 54, 703–718 (1989) [Erratum in Numer. Math. 55, 747 (1989)]

    Google Scholar 

  5. Berrut, J.-P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bos, L., De Marchi, S., Hormann, K., Klein, G.: On the Lebesgue constant of barycentric rational interpolation at equidistant nodes. Numer. Math. 121, 461–471 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brutman, L.: Lebesgue functions for polynomial interpolation—a survey. Ann. Numer. Math. 4, 111–127 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Dzyadyk, V.K., Dzyadyk, S.Yu., Prypik, A.S.: Asymptotic behavior of Lebesgue constants in trigonometric interpolation. Ukranian Math. J. 33, 553–559 (1981)

    Article  MathSciNet  Google Scholar 

  9. Erdős, P.: Problems and results on the theory of interpolation II. Acta Math. Hungar. 12, 235–244 (1961)

    Article  Google Scholar 

  10. Faber, G.: Über die interpolatorische Darstellung stetiger Funktionen. Jahresb. der Deutschen Math.-Ver. 23, 192–210 (1914)

    MATH  Google Scholar 

  11. Gautschi, W.: Barycentric formulae for Cardinal (SINC-) interpolants by Jean-Paul Berrut. Numer. Math. 87, 791–792 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Günttner, R.: Evaluation of Lebesgue constants. SIAM J. Numer. Anal. 17, 512–520 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Henrici, P.: Barycentric formulas for interpolating trigonometric polynomials and their conjugates. Numer. Math. 33, 225–234 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jackson, D.: The Theory of Approximations. American Mathematical Society, Providence (1930)

    Google Scholar 

  15. Luttman, F.W., Rivlin, T.J.: Some numerical experiments in the theory of polynomial interpolation. IBM J. Res. Dev. 2, 187–191 (1965)

    Article  Google Scholar 

  16. Rivlin, T.: The Lebesgue constants for polynomial interpolation. In: Garnir, H., Unni, K., Williamson, J. (eds.) Functional Analysis and Its Applications. Lecture Notes in Mathematics, pp. 422–437. Springer, Berlin/Heidelberg (1974)

    Chapter  Google Scholar 

  17. Schmeisser, G., Stenger, F.: Sinc approximation with a Gaussian multiplier. Sampl. Theory Signal Image Process. 6, 199–221 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Smith, S.J.: Lebesgue constants in polynomial interpolation. Ann. Math. Inform. 33, 109–123 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)

    Book  MATH  Google Scholar 

  20. Stenger, F.: Handbook of Sinc Numerical Methods. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  21. Trynin, A.Yu.: Estimates for the Lebesgue functions and the Nevai formula for the Sinc-approximations of continuous functions on an interval. Siberian Math. J. 48, 929–938 (2007)

    Article  MathSciNet  Google Scholar 

  22. Vértesi, P.: Optimal Lebesgue constant for Lagrange interpolation. SIAM J. Numer. Anal. 27, 1322–1331 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vértesi, P.: Classical (unweighted) and weighted interpolation. In: Horvath, J. (ed.) A Panorama of the Hungarian Mathematics in the Twentieth Century I. Bolyai Society Mathematical Studies, vol. 14, pp. 71–117. Springer, Heidelberg (2006)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the referee for his valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Stenger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stenger, F., El-Sharkawy, H.A.M., Baumann, G. (2014). The Lebesgue Constant for Sinc Approximations. In: Zayed, A., Schmeisser, G. (eds) New Perspectives on Approximation and Sampling Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-08801-3_13

Download citation

Publish with us

Policies and ethics