Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

A band-limited function may oscillate faster than its maximum Fourier component, and it may do so over arbitrarily long intervals. The goal of this chapter is to discuss this phenomenon, which has been called “superoscillation”. Although the theoretical interest in superoscillating functions is relatively recent, a number of applications are already known (in quantum physics, superresolution, subwavelength imaging and antenna theory). This chapter gives a brief account of how superoscillations appeared and developed and discusses their cost and some of their implications.

Dedicated to Paul L. Butzer, in friendship and high esteem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Paul Butzer has contributed significantly to sampling itself and to the study of its history. His work along the latter line includes [10, 14] and the more recent articles [1113]. The history of the sampling principle is particularly challenging because the main ideas appeared in several independent works across the world: the USA, Europe, Japan [13] and Russia (see the translation of Kotel’nikov’s work in [3]). The multiple discovery of the sampling principle is the subject of [24].

  2. 2.

    See [35, 36], in which the so-called Nyquist rate is shown to be the minimum rate at which stable reconstruction can be performed.

  3. 3.

    As an example, Voelcker and Requicha [48] mention that speech that has been SSB-clipped (SSB modulated, clipped, retranslated to baseband) was known to possess much higher quality than LP-clipped speech. The references can be traced back to an information theory meeting held in 1956.

References

  1. Aharonov, Y., Anandan, J., Popescu, S., Vaidman, L.: Superpositions of time evolutions of a quantum system and a quantum time-translation machine. Phys. Rev. Lett. 64(25), 2965–2968 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Some mathematical properties of superoscillations. J. Phys. A Math. Theor. 44(365304), 16 (2011)

    MathSciNet  Google Scholar 

  3. Benedetto, J.J., Ferreira, P.J.S.G. (eds.): Modern Sampling Theory: Mathematics and Applications. Birkhäuser, Boston (2001)

    Google Scholar 

  4. Berry, M.: Faster than Fourier. In: Anandan, J.S., Safko, J.L. (eds.) Quantum Coherence and Reality; In Celebration of the 60th Birthday of Yakir Aharonov, pp. 55–65. World Scientific, Singapore (1994)

    Google Scholar 

  5. Berry, M.V.: Evanescent and real waves in quantum billiards and Gaussian beams. J. Phys. A Math. Gen. 27(11), L391–L398 (1994)

    Article  MATH  Google Scholar 

  6. Berry, M.V.: Quantum backflow, negative kinetic energy, and optical retro-propagation. J. Phys. A Math. Theor. 43(415302), 15 (2010)

    Google Scholar 

  7. Berry, M.V., Dennis, M.R.: Natural superoscillations in monochromatic waves in d dimensions. J. Phys. A Math. Theor. 42(022003), 8 (2009)

    MathSciNet  Google Scholar 

  8. Berry, M.V., Popescu, S.: Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A Math. Gen. 39, 6965–6977 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bond, F.E., Cahn, C.R.: On sampling the zeros of bandwidth limited signals. IRE Trans. Inform. Theor. 4(3), 110–113 (1958)

    Article  Google Scholar 

  10. Butzer, P.L.: A survey of the Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Expos. 3(1), 185–212 (1983)

    MathSciNet  Google Scholar 

  11. Butzer, P.L., Dodson, M.M., Ferreira, P.J.S.G., Higgins, J.R., Lange, O., Seidler, P.: Herbert Raabe’s work in multiplex signal transmission and his development of sampling methods. Signal Process. 90(5), 1436–1455 (2010)

    Article  MATH  Google Scholar 

  12. Butzer, P.L., Dodson, M.M., Ferreira, P.J.S.G., Higgins, J.R., Lange, O. Seidler, P., Stens, R.L.: Multiplex signal transmission and the development of sampling techniques: the work of Herbert Raabe in contrast to that of Claude Shannon. Appl. Anal. 90(3), 643–688 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Butzer, P.L., Ferreira, P.J. S.G., Higgins, J.R., Saitoh, S., Schmeisser, G., Stens, R.L.: Interpolation and sampling: E. T. Whittaker, K. Ogura and their followers. J. Fourier Anal. Appl. 17(2), 320–354 (2011)

    Google Scholar 

  14. Butzer, P.L., Stens, R.L.: Sampling theory for not necessarily band-limited functions: a historical overview. SIAM Rev. 34(1), 40–53 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience Publishers Inc., New York (1953). Reprinted: John Wiley & Sons, Wiley Classics Library Edition (1989)

    Google Scholar 

  16. Dennis, M.R., Lindberg, J.: Natural superoscillation of random functions in one and more dimensions. In: Proc. SPIE Int. Soc. Optical Eng. 7394, 73940A (9 pp) (2009)

    Google Scholar 

  17. Dae G.L., Ferreira P.J.S.G.: Superoscillations of prescribed amplitude and derivative. IEEE Trans. Signal Processing, 62(13), 3371–3378 (2014)

    Article  Google Scholar 

  18. Dae G.L., Ferreira P.J.S.G.: Superoscillations with optimum energy concentration. IEEE Trans. Signal Processing, 62(18), 4857–4867 (2014)

    Article  Google Scholar 

  19. Dae G.L., Ferreira P.J.S.G.: Superoscillations with Optimal Numerical Stability. IEEE Sig. Proc. Letters, 21(12), 1443–1447 (2014)

    Article  Google Scholar 

  20. Dae G.L., Ferreira P.J.S.G.: Direct construction of superoscillations. IEEE Trans. Signal Processing, 62(12), 3125–3134 (2014)

    Article  Google Scholar 

  21. Eisler, V., Peschel, I.: Free-fermion entanglement and spheroidal functions. J. Stat. Mech. Theor. Exp. 2013(4), P04028 (2013)

    Article  MathSciNet  Google Scholar 

  22. Ferreira, P.J.S.G.: Incomplete sampling series and the recovery of missing samples from oversampled band-limited signals. IEEE Trans. Signal Process. 40(1), 225–227 (1992)

    Article  Google Scholar 

  23. Ferreira, P.J.S.G.: The stability of a procedure for the recovery of lost samples in band-limited signals. Signal Process. 40(3), 195–205 (1994)

    Article  MATH  Google Scholar 

  24. Ferreira, P.J.S.G., Higgins, R.: The establishment of sampling as a scientific principle—a striking case of multiple discovery. Notices of the AMS 58(10), 1446–1450 (2011)

    MATH  MathSciNet  Google Scholar 

  25. Ferreira, P.J.S.G., Kempf, A.: The energy expense of superoscillations. In:Signal Processing XI—Theories and Applications. Proceedings of EUSIPCO-2002, XI European Signal Processing Conference, vol. II, pp. 347–350, Toulouse, France, Sept 2002

    Google Scholar 

  26. Ferreira, P.J.S.G., Kempf, A.: Superoscillations: faster than the Nyquist rate. IEEE Trans. Signal Process. 54(10), 3732–3740 (2006)

    Article  Google Scholar 

  27. Ferreira, P.J.S.G., Kempf, A., Reis, M.J.C.S.: Construction of Aharonov-Berry’s superoscillations. J. Phys. A Math. Gen. 40, 5141–5147 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  29. Huang, F.M., Chen, Y., Garcia de Abajo, F.J., Zheludev, N.I.: Optical super-resolution through super-oscillations. J. Opt. A Pure Appl. Opt. 9, S285–S288 (2007)

    Google Scholar 

  30. Huang, F.M., Zheludev, N.I.: Super-resolution without evanescent waves. Nano Lett. 9(3), 1249–1254 (2009)

    Article  Google Scholar 

  31. Katzav, E., Schwartz, M.: Yield–optimized superoscillations. IEEE Trans. Signal Process. 61(12), 3113–3118 (2013)

    Article  Google Scholar 

  32. Kempf, A.: Black holes, bandwidths and Beethoven. J. Math. Phys. 41(4), 2360–2374 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kempf, A., Ferreira, P.J.S.G.: Unusual properties of superoscillating particles. J. Phys. A Math. Gen. 37, 12067–12076 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kempf, A., Martin, R.: Information theory, spectral geometry, and quantum gravity. Phys. Rev. Lett. 100, 021304 (2008)

    Article  MathSciNet  Google Scholar 

  35. Landau, H.J.: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117, 37–52 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  36. Landau, H.J.: Sampling, data transmission, and the Nyquist rate. Proc. IEEE 55(10), 1701–1706 (1967)

    Article  Google Scholar 

  37. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—II. Bell Syst. Tech. J. 40, 65–84 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  38. Levi, L.: Fitting a bandlimited signal to given points. IEEE Trans. Inform. Theor. 372–376 (1965)

    Google Scholar 

  39. Ostrovskii, I., Ulanovskii, A.: Non-oscillating Paley-Wiener functions. C. R. Acad. Sci. Paris Sér. I 333, 735–740 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Qiao, W.: A simple model of Aharonov-Berry’s superoscillations. J. Phys. A Math. Gen. 29, 2257–2258 (1996)

    Article  MATH  Google Scholar 

  41. Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 23, 282–332 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 24, 46–156 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  43. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  44. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  45. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—V: the discrete case. Bell Syst. Tech. J. 57(5), 1371–1430 (1978)

    Article  MATH  Google Scholar 

  46. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 40(1), 43–63 1961

    Article  MATH  MathSciNet  Google Scholar 

  47. Sokolovski, D., Mayato, R.S.: Superluminal transmission via entanglement, superoscillations, and quasi-Dirac distributions. Phys. Rev. A 81, 022105 (2010)

    Article  Google Scholar 

  48. Voelcker, H.B., Requicha, A.A.: Clipping and signal determinism: two algorithms requiring validation. IEEE Trans. Commun. 21, 738–744 (1973)

    Article  Google Scholar 

  49. Walker, W.J.: Almost periodic functions with bounded Fourier exponents. J. Math. Anal. Appl. 162, 537–541 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  50. Walker, W.J.: Zeros of the Fourier transform of a distribution. J. Math. Anal. Appl. 154, 77–79 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  51. Wong, A.M.H., Eleftheriades, G.V.: Adaptation of Schelkunoff’s superdirective antenna theory for the realization of superoscillatory antenna arrays. IEEE Antennas Wireless Propag. Lett. 9 315–318 (2010)

    Article  Google Scholar 

  52. Wong, A.M.H., Eleftheriades, G.V.: Superoscillatory antenna arrays for sub-diffraction focusing at the multi-wavelength range in a waveguide environment. In: 2010 IEEE Antennas and Propagation Society International Workshop (APSURSI), pp. 1–4, Toronto, Canada, July 2010

    Google Scholar 

  53. Wong, A.M.H., Eleftheriades, G.V.: Sub-wavelength focusing at the multi-wavelength range using superoscillations: an experimental demonstration. IEEE Trans. Antennas Propag. 59(12), 4766–4776 (2011)

    Article  Google Scholar 

  54. Wong, A.M.H., Eleftheriades, G.V.: Temporal pulse compression beyond the Fourier transform limit. IEEE Trans. Microwave Theor. Tech. 59(9), 2173–2179 (2011)

    Article  Google Scholar 

  55. Zheludev, N.I.: What diffraction limit? Nat. Mater. 7, 420–422 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. S. G. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferreira, P.J.S.G. (2014). Superoscillations. In: Zayed, A., Schmeisser, G. (eds) New Perspectives on Approximation and Sampling Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-08801-3_10

Download citation

Publish with us

Policies and ethics