Skip to main content

Dispersion of Carbon-Based Materials (CNTs, Graphene) in Polymer Matrices

  • Chapter
  • First Online:
Carbon for Sensing Devices

Abstract

Polymer composites containing carbon-based fillers have recently received considerable attention due to their remarkable properties (i.e. mechanical, electrical, thermal and optical) together with low weight, easy processing.

Among the main carbon-based fillers, carbon nanotubes (CNTs), expanded graphite (EG), graphite nanoplateles (GNPs), graphene oxide (GO) and graphene (GR) attracted considerable attention in a great variety of applications such as chemical and biosensors, energy storage materials, field effect transistors, polymer composites, etc. In particular, CNTs and GRs are considered ideal materials for preparing “metal-free” conductive polymer composites or for reinforcing materials with potential applications in aerospace and automotive sectors, where lightweight and robust materials are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kordas K, Mustonen T, Toth G, Jantunen H, Lajunen M, Soldano C, et al. Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes. Small. 2006;2(8–9):1021–5.

    Article  Google Scholar 

  2. Kim S-m, Kim J, Lim J, Choi M, Kang S, Lee S, et al. Nanoimprinting of conductive tracks using metal nanopowders Applied Physics Letters. 2007;91(14):143117–20.

    Article  Google Scholar 

  3. Cho J, Shin K-H, Jang J. Micropatterning of conducting polymer tracks on plasma treated flexible substrate using vapor phase polymerization-mediated inkjet printing. Synth Met. 2010;160(9–10):1119–25.

    Article  Google Scholar 

  4. Gao W, Singh N, Song L, Liu Z, Reddy ALM, Ci L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films Nat Nanotechnol. 2011;6(8):496–500.

    Article  Google Scholar 

  5. Cesano F, Rattalino I, Bardelli F, Sanginario A, Gianturco A, Veca A, et al. Structure and properties of metal-free conductive tracks on polyethylene/multiwalled carbon nanotube composites as obtained by laser stimulated percolation. Carbon. 2013;61(September 2013):63–71.

    Article  Google Scholar 

  6. Cravanzola S, Haznedar G, Scarano D, Zecchina A, Cesano F. Carbon-based piezoresistive polymer composites: structure and electrical properties. Carbon. 2013;62(October 2013):270–7.

    Article  Google Scholar 

  7. Haznedar G, Cravanzola S, Zanetti M, Scarano D, Zecchina A, Cesano F. Graphite nanoplatelets and carbon nanotubes based polyethylene nanocomposites: electrical conductivity and morphology. Materials Chemistry and Physics. 2013;143(1):47–52.

    Article  Google Scholar 

  8. Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nature Mater. 2006;5:457–62.

    Article  Google Scholar 

  9. Coleman JN, Khan U, Blau WJ, Gun’ko YK. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006 Aug;44(9):1624–52.

    Article  Google Scholar 

  10. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. 2006 Mar;106(3):1105–36.

    Article  Google Scholar 

  11. Zhbanov AI, Pogorelov EG, Chang YC. Van der Waals interaction between two crossed carbon nanotubes. ACS Nano. 2010;4(10):5937–45.

    Article  Google Scholar 

  12. Ruoff RS, Tersoff J, Lorents DC, Subramohey S, Chan B. Radial Deformation of Carbon Nanotubes by van der Waals Forces. Nature. 1993;364:514–6.

    Article  Google Scholar 

  13. Premkumar T, Mezzenga R, Geckeler KE. Carbon Nanotubes in the Liquid Phase: Addressing the Issue of Dispersion. Small. 2012 May;8(9):1299–313.

    Article  Google Scholar 

  14. Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon. 2011 Jul;49(8):2581–602.

    Article  Google Scholar 

  15. Dyke CA, Tour JM. Covalent functionalization of single-walled carbon nanotubes for materials applications. Journal of Physical Chemistry A. 2004 Dec;108(51):11151–9.

    Article  Google Scholar 

  16. Kuzmany H, Kukovecz A, Simon F, Holzweber A, Kramberger C, Pichler T. Functionalization of carbon nanotubes. Synth Met. 2004 Mar;141(1–2):113–22.

    Article  Google Scholar 

  17. Prato M. Controlled nanotube reactions. Nature. 2010 May;465(7295):172–3.

    Article  Google Scholar 

  18. Sakellariou G, Ji H, Mays JW, Hadjichristidis N, Baskaran D. Controlled covalent functionalization of multiwalled carbon nanotubes using [4 + 2] cycloaddition of benzocyclobutenes. Chemistry of Materials. 2007 Dec;19(26):6370–2.

    Article  Google Scholar 

  19. Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, et al. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon. 2012a Jan;50(1):3–33.

    Article  Google Scholar 

  20. Giulianini M, Waclawik ER, Bell JM et al., Regioregular poly(3-hexyl-thiophene) helical self-organization on carbon nanotubes. App Phys Lett. 2009b;95:013304.

    Google Scholar 

  21. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based polymer nanocomposites. Polymer. 2011;52:5–25.

    Article  Google Scholar 

  22. Szleifer I, Yerushalmi-Rozen R. Polymers and carbon nanotubes-dimensionality, interactions and nanotechnology. Polymer. 2005;46:7803–18.

    Article  Google Scholar 

  23. Hirsch A. Functionalization of single-walled carbon nanotubes. Angewandte Chemie-International Edition. 2002;41(11):1853–9.

    Article  Google Scholar 

  24. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112:6156–214.

    Article  Google Scholar 

  25. Homenick CM, Lawson G, Adronov A. Polymer Grafting of Carbon Nanotubes Using Living Free-Radical Polymerization. Polym Rev. 2007;47:265–90.

    Article  Google Scholar 

  26. Harris PJF. Carbon nanotube composites. International Materials Reviews. 2004 Feb;49(1):31–43.

    Article  Google Scholar 

  27. Roy N, Sengupta R, Bhowmick AK. Modifications of carbon for polymer composites and nanocomposites. Progress in Polymer Science. 2012 Jun;37(6):781–819.

    Article  Google Scholar 

  28. Gong XY, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-assisted processing of carbon nanotube/polymer composites. Chemistry of Materials. 2000 Apr;12(4):1049–52.

    Article  Google Scholar 

  29. Andrews R, Jacques D, Minot M, Rantell T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromolecular Materials and Engineering. 2002 Jun;287(6):395–403.

    Article  Google Scholar 

  30. Gomez FJ, Chen RJ, Wang DW, Waymouth RM, Dai HJ. Ring opening metathesis polymerization on non-covalently functionalized single-walled carbon nanotubes. Chemical Communications. 2003(2):190–1.

    Google Scholar 

  31. Liu YQ, Adronov A. Preparation and utilization of catalyst-functionalized single-walled carbon nanotubes for ring-opening metathesis polymerization. Macromolecules. 2004 Jun;37(13):4755–60.

    Article  Google Scholar 

  32. Coleman JN, Ferreira MS. Geometric constraints in the growth of nanotube-templated polymer monolayers. Applied Physics Letters. 2004;84(5):798–800.

    Article  Google Scholar 

  33. Besteman K, Lee J-O, Wiertz FGM, Heering Ha, Dekker C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Letters. 2003;3:727–30.

    Article  Google Scholar 

  34. Liu Y-T, Zhao W, Huang Z-Y, Gao Y-F, Xie X-M, Wang X-H, et al. Noncovalent surface modification of carbon nanotubes for solubility in organic solvents. Carbon. 2004;44:1613–6.

    Article  Google Scholar 

  35. Karousis N, Tagmatarchis N, Tasis D. Current Progress on the Chemical Modification of Carbon Nanotubes. Chem Rev. 2010;110:5366–97.

    Article  Google Scholar 

  36. Cohen ML. Nanotubes, Nanoscience, and Nanotechnology. Materials Science and Engineering: C. 2001;15(1):1–11.

    Article  Google Scholar 

  37. Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, et al. Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes. Angew Chem Int Ed. 2001;40(9):1721–5.

    Article  Google Scholar 

  38. Dalmas F, Chazeau L, Gauthier C, Masenelli-Varlot K, Dendievel R, Cavaille JY, et al. Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties. Journal of Polymer Science Part B-Polymer Physics. 2005 May;43(10):1186–97.

    Article  Google Scholar 

  39. Thostenson ET, Chou TW. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. Journal of Physics D-Applied Physics. 2002 Aug;35(16):L77–L80.

    Article  Google Scholar 

  40. Tibbetts GG, McHugh JJ. Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices. Journal of Materials Research. 1999 Jul;14(7):2871–80.

    Article  Google Scholar 

  41. Keogh SM, Hedderman TG, Gregan E, Farrell G, Chambers G, Byrne HJ. Spectroscopic analysis of single-walled carbon nanotubes and semiconjugated polymer composites. Journal of Physical Chemistry B. 2004 May;108(20):6233–41.

    Article  Google Scholar 

  42. Tang BZ, Xu HY. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules. 1999 Apr;32(8):2569–76.

    Article  Google Scholar 

  43. Coleman JN, Curran S, Dalton AB, Davey AP, Mc Carthy B, Blau W, et al. Physical doping of a conjugated polymer with carbon nanotubes. Synth Met. 1999 Jun;102(1–3):1174–5.

    Article  Google Scholar 

  44. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett. 2001;342:265–71.

    Article  Google Scholar 

  45. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters. 2003 Feb;3(2):269–73.

    Article  Google Scholar 

  46. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol. 2006 Oct;1(1):60–5.

    Article  Google Scholar 

  47. Liu HP, Nishide D, Tanaka T, Kataura H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nature Communications. 2011 May;2:8.

    Google Scholar 

  48. Koshio A, Yudasaka M, Zhang M, Iijima S. A Simple Way to Chemically React VSingle-Wall Carbon Nanotubes with Organic Materials Using Ultrasonication. Nano Letters. 2001;1(7):361–3.

    Google Scholar 

  49. Fu K, Huang W, Lin Y, Riddle LA, Carroll DL, Sun Y-P. Defunctionalization of Functionalized Carbon Nanotubes. Nano Letters. 2001;1(8):439–41.

    Article  Google Scholar 

  50. Bonduel D, Mainil ML, Alexandre M, Monteverde F, Dubois P. Supported coordination polymerization: a unique way to potent polyolefin carbon nanotube nanocomposites. Chemical Communications. 2005(6):781–3.

    Google Scholar 

  51. Zheng W, Shen B, Zhai W. Surface Functionalization of Graphene with Polymers for Enhanced Properties. In: Gong JR, ed. New Progress on Graphene Research: InTech 2013:260.

    Google Scholar 

  52. Zhao J, Chen G, Zhang W, Li P, Wang L, Yue Q, et al. High-resolution separation of graphene oxide by capillary electrophoresis. Analytical Chemistry. 2011;83:9100–6.

    Article  Google Scholar 

  53. Sun X, Luo D, Liu J, Evans DG. Monodisperse Chemically Modified Graphene Obtained by Density Gradient Ultracentrifugal Rate Separation. ACS Nano. 2010;4(6):3381–9.

    Article  Google Scholar 

  54. Yang M, Hou Y, Kotov N. Graphene-based multilayers: Critical evaluation of materials assembly techniques. Nano Today. 2012;7:430–47.

    Article  Google Scholar 

  55. Qing Z, Li SHI, Jun Y, Science M, Engineering M, Kong H. Langmuir—Blodgett assembly of ultra—large graphene oxide films for transparent electrodes. Trans Nonferrous Met Soc China. 2012;22:2504–11.

    Article  Google Scholar 

  56. Zhang B, Cui T. An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly. Applied Physics Letters. 2011;98(7):073116.

    Article  Google Scholar 

  57. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, et al. Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced Functional Materials. 2009;19:2297–302.

    Article  Google Scholar 

  58. Bai H, Xu Y, Zhao L, Li C, Shi G. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications. 2009:1667–9.

    Google Scholar 

  59. Ghosh A, Rao KV, George SJ, Rao CNR. Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate. Chemistry an European Journal. 2010;16:2700–4.

    Article  Google Scholar 

  60. Choi E-Y, Han TH, Hong J, Kim JE, Lee SH, Kim HW, et al. Noncovalent functionalization of graphene with end-functional polymers. Journal of Materials Chemistry. 2010;20:1907–12.

    Article  Google Scholar 

  61. Mohamadi S, Sharifi-Sanjani N, Mahdavi H. Functionalization of Graphene Sheets via Chemically Grafting of PMMA Chains Through in-situ Polymerization. Journal of Macromolecular Science, Part A. 2011;48:577–82.

    Article  Google Scholar 

  62. Shen B, Zhai W, Chen C, Lu D, Wang J, Zheng W. Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS applied materials & interfaces. 2011;3:3103–9.

    Article  Google Scholar 

  63. Liu J, Yang W, Tao L, Li D, Boyer C, Davis TP. Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry. 2009;48:425–33.

    Article  Google Scholar 

  64. Xu Y, Bai H, Lu G, Li C, Shi G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. JACS. 2008;130(18):5856–7.

    Article  Google Scholar 

  65. Liu J, Tao L, Yang W, Li D, Boyer C, Wuhrer R, et al. Synthesis, characterization, and multilayer assembly of pH sensitive graphene-polymer nanocomposites. Langmuir. 2010;26(12):10068–75.

    Article  Google Scholar 

  66. Salavagione HJ, Martínez G, Ellis G. Recent advances in the covalent modification of graphene with polymers. Macromolecular Rapid Communications. 2011;32:1771–89.

    Article  Google Scholar 

  67. Salavagione HJ, GoÌmez Mna, MartiÌnez G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules. 2009;42:6331–4.

    Article  Google Scholar 

  68. Zhuang X-D, Chen Y, Liu G, Li P-P, Zhu C-X, Kang E-T, et al. Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. Advanced Materials. 2010;22:1731–5.

    Article  Google Scholar 

  69. Fang M, Wang K, Lu H, Yang Y, Nutt S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry. 2009;19:7098.

    Article  Google Scholar 

  70. Gonçalves G, Marques PaaP, Barros-Timmons A, Bdkin I, Singh MK, Emami N, et al. Graphene oxide modified with PMMA via ATRP as a reinforcement filler. Journal of Materials Chemistry. 2010;20:9927.

    Article  Google Scholar 

  71. Zhang C, Liu T. A review on hybridization modification of graphene and its polymer nanocomposites. Chinese Science Bulletin. 2012;57:3010–21.

    Article  Google Scholar 

  72. Zhang SM, Lin L, Deng H, Gao X, Bilotti E, Peijs T, et al. Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. Expr Polym Lett. 2012;6(2):159–68.

    Article  Google Scholar 

  73. Wen M, Sun X, Su L, Shen J, Li J, Guo S. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer. 2012;53(7):1602–10.

    Article  Google Scholar 

  74. Kostagiannakopoulou C, Maroutsos G, Sotiriadis G, Vavouliotis A, Kostopoulos V. Study on the synergistic effects of graphene/carbon nanotubes polymer nanocomposites. SPIE Proc. 2011;8409:840911.

    Article  Google Scholar 

  75. Mani V, Chen S-m, Lou B-s. Three Dimensional Graphene Oxide-Carbon Nanotubes and Graphene-Carbon Nanotubes Hybrids. International Journal of Electrochemical Science. 2013;8:11641–60.

    Google Scholar 

  76. Shin MK, Lee B, Kim SH, Lee JA, Spinks GM, Gambhir S, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nature Communications. 2012;3:650.

    Article  Google Scholar 

  77. Yen M-Y, Hsiao M-C, Liao S-H, Liu P-I, Tsai H-M, Ma C-CM, et al. Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon. 2011;49:3597–606.

    Article  Google Scholar 

  78. Prasad KE, Das B, Maitra U, Ramamurty U, Rao CNR. Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. PNAS. 2009;106(32):13186–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenica Scarano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cesano, F., Scarano, D. (2015). Dispersion of Carbon-Based Materials (CNTs, Graphene) in Polymer Matrices. In: Demarchi, D., Tagliaferro, A. (eds) Carbon for Sensing Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08648-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08648-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08647-7

  • Online ISBN: 978-3-319-08648-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics