Skip to main content

Structural Health Monitoring of Wind Turbine Blades

  • Chapter
  • First Online:
Wind Turbine Control and Monitoring

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Wind turbine blades usually achieve a very long operating life of 20–30 years. During their operation, the blades encounter complex loading with a high number of cycles as well as severe weather. All of these factors result in accumulated damage, acceleration of fatigue damage, and even sudden blade failure, which can cause catastrophic damage to the wind turbine. In recent years, many structural health monitoring (SHM) techniques, including global and local methods, have been developed and applied as important and valid tools to detect the damage of wind turbine blades. This chapter provides a comprehensive review and analysis on the state of the art of SHM for blades. Then, the SHM techniques are described in detail. For the global method, this chapter discusses mainly the vibration-based damage detection problem for wind turbine blades given the rotation effects. For the local methods, a fatigue damage detection system used for wind turbine blade is developed using high spatial resolution differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA) sensing system and PZT sensors is introduced to detect the tiny damage under static loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Section area of elements

b max,k :

The largest length of the signal curve of every time series as the interval time is k

b min,k :

The length of the signal curve which pass through no damaged region as the interval time is k

C :

System damping matrix

E :

Elastic modulus, the residual error

FD max :

The largest value of estimated FD of the curve of each time series

J :

FD-based damage acuteness index

K :

System stiffness matrix

K s :

The structural stiffness

K d :

The additional stiffness

K 0 :

Is the normal modal stiffness matrix

K 1(α):

The stiffness matrix of the geometric nonlinearities

L :

The length of time series of PZT signal

M :

System mass matrix

n :

The degrees of freedom of the structure, the refractive index of the fiber core

NI :

The damage index based on PCA method

\(\bar{NI}\) :

The mean value of NI

t :

Time

T :

The loading matrix

u 0 :

The displacement in x direction

v :

The external force

V a :

The velocity of the acoustic wave

\(\nu_{\text{B}}\) :

The Brillouin frequency shift

v 0 :

The displacement in y direction

X :

The scores matrix

\(\hat{X}\) :

The reconstructed data

Y :

The compressed data

Z :

The displacements of the degrees of freedom of the structure

\(\dot{Z}\) :

The velocities of the degrees of freedom of the structure

\(\mathop Z\limits^{..}\) :

The accelerations of the degrees of freedom of the structure

U :

The potential energy of strain

α:

The modal coordinate, the first Rayleigh damping coefficients

β:

The second Rayleigh damping coefficients

\(\varepsilon\) :

The normal strain

\(\lambda\) :

The eigenvalues, the vacuum wavelength of the pump light

σ:

Standard deviation

ω:

The angular frequency

[]:

The Gauss’ notation

References

  1. Schroeder K, Ecke W, Apitz J et al (2006) A Fibre Bragg Grating sensor system monitors operational load in a wind turbine rotor blade. Meas Sci Technol 17(5):1167–1172

    Article  Google Scholar 

  2. Krämer SGM, Wiesent B, Müller MS et al (2008) Fusion of a FBG-based health monitoring system for wind turbines with a Fiber-optic lightning detection system. In: Proceeding of SPIE 7004, 19th international conference on optical fibre sensors, 70040O; doi:10.1117/12.783602

  3. Ecke W, Schröder K (2008) Fiber Bragg Grating sensor system for operational load monitoring of wind turbine blades. In: Proceeding of SPIE 6933, Smart Sensor Phenomena, Technology, Networks and Systems, 69330I; doi:10.1117/12.783602

  4. Bang H-J, Shin H-K, Ju Y-C (2010) Structural health monitoring of a composite wind turbine blade using Fiber Bragg Grating sensors. In: Proceeding of SPIE 7647, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 76474H; doi:10.1117/12.847557

  5. Krebber K, Habel W, Gutmann T et al (2005) Fiber Bragg Grating sensors for monitoring of wind turbine blades. Proc SPIE 5855:1036–1039

    Article  Google Scholar 

  6. Eum SH, Kageyama K, Murayama H et al (2008) Process/health monitoring for wind turbine blade by using FBG sensors with multiplexing Techniques. Proc SPIE 7004:70045B

    Article  Google Scholar 

  7. Rohrmann RG, Rucker W, Thons S (2007) Integrated monitoring systems for offshore wind turbines. In: Proceedings of the sixth international workshop on structural health monitoring. Stanford, US

    Google Scholar 

  8. Mcgugan M, Sorensen BF (2007) Fundamentals for remote condition monitoring of offshore wind turbine blades. In: Proceedings of the sixth international workshop on structural health monitoring. Stanford, US

    Google Scholar 

  9. Joosse P, Blanch M, Dutton A et al (2002) Acoustic emission monitoring of small wind turbine blades. J SolEnergy Eng 124(4):446–454

    Google Scholar 

  10. Blanch M, Dutton A (2003) Acoustic emission monitoring of field tests of an operating wind turbine. In: Proceedings of the 5th international conference on damage assessment of structures. Southampton, UK

    Google Scholar 

  11. Kirikera GR, Schulz MJ, Sundaresan MJ (2007) Multiple damage identification on a wind turbine blade using a structural neural system. Proc SPIE 6530:65300T

    Article  Google Scholar 

  12. Rumsey MA, Paquette JA (2008) Structural health monitoring of wind turbine blades. Proc SPIE 6933:69330E

    Article  Google Scholar 

  13. Zhou W, Huang Y, Li H (2008) Damage propagation monitoring of composite blade under static loading. In: Proceeding of 2nd Asia-Pacific workshop on structural health monitoring. Melbourne, Australia

    Google Scholar 

  14. Sundaresan MJ, Schulz MJ, Ghoshal A (2002) Structural health monitoring static test of a wind turbine blade. National Renewable Energy Laboratory March, Subcontractor Report NREL/SR-500-28719

    Google Scholar 

  15. Frankenstein B, Schubert L, Meyendorf N (2009) Monitoring system of wind turbine rotor blades. Proc SPIE 7293:72930X

    Article  Google Scholar 

  16. Gross E, Simmermacher T, Rumsey M et al (1999) Application of damage detection techniques uing wind turbine modal data. American society of mechanical engineers wind energy symposium, AIAA 99-0047: 230-235

    Google Scholar 

  17. Ghoshal A, Sundaresan MJ, Schulz MJ (2000) Structural health monitoring techniques for wind turbine blades. J Wind Eng Ind Aerodyn 85:309–324

    Article  Google Scholar 

  18. Kraemer P, Fritzen CP (2007) Concept for structural damage identification of offshore wind energy plants. In: Proceedings of the sixth international workshop on structural health monitoring. Stanford, US

    Google Scholar 

  19. Whelan MJ, Janoyan KD, Qiu T (2008) Integrated monitoring of wind plant systems. In: Proceeding of SPIE 6933, smart sensor phenomena, technology, networks, and systems, 69330F. doi: 10.1117/12.776753

  20. Dolinski L, Krawczuk M (2009) Damage detection in turbine wind blades by vibration based methods. J Phys Conf Ser 181:12–86

    Article  Google Scholar 

  21. Peeters B, Maeck J, Roeck GD (2001) Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart Mater Struct 10(3):518

    Article  Google Scholar 

  22. Peeters B, Roeck GD (2001) One-year monitoring of the Z24-bridge: environmental effects versus damage events. Earthquake Eng Struct Dynam 30(2):149–171

    Article  Google Scholar 

  23. Yan AM, Kerschen G, Boe PD, Golinval JC (2005) Structural damage diagnosis under varying environmental conditions - part I: a linear analysis. Mech Syst Sig Process 19(4):847–864

    Article  Google Scholar 

  24. Yan AM, Kerschen G, Boe PD, Golinval JC (2005) Structural damage diagnosis under varying environmental conditions - part II: local PCA for non-linear cases. Mech Syst Sig Process 19(4):865–880

    Article  Google Scholar 

  25. Xia Y, Hao H, Zanardo G, Deeks A (2006) Long term vibration monitoring of an RC slab: temperature and humidity effect. Eng Struct 28(3):441–452

    Article  Google Scholar 

  26. Kim JT, Park JH, Lee BJ (2006) Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions. Eng Struct 29(7):1354–1365

    Article  MathSciNet  Google Scholar 

  27. Liu C, DeWolf JT (2007) Effect of temperature on modal variability of a curved concrete bridge under ambient loads. J Struct Eng 133(12):1742–1751

    Article  Google Scholar 

  28. Deraemaeker A, Reynders E, Roeck GD et al (2008) Vibration-based structural health monitoring using output-only measurements under changing environment. Mech Syst Sig Process 22(1):34–56

    Article  Google Scholar 

  29. Balmes E, Basseville M, Bourquin F et al (2008) Merging sensor data from multiple temperature scenarios for vibration monitoring of civil structures. Struct Health Monit 7(2):129–142

    Article  Google Scholar 

  30. Basseville M, Bourquin F, Mevel L (2010) Handling the temperature effect in vibration monitoring: two subspace-based analytical approaches. J Eng Mech 136(3):367–378

    Article  Google Scholar 

  31. Yoo HH, Shin SH (1998) Vibration analysis of rotating cantilever beams. J Sound Vib 212(5):807–828

    Article  Google Scholar 

  32. Bucher I, Ewins DJ (2001) Modal analysis and testing of rotating structures. Philos Trans Roy Soc London Ser A Math Phys Eng Sci 359(1778):61–96

    Article  MATH  Google Scholar 

  33. Osgood RM (2001) Dynamic characterization testing of wind turbines. Technical Report, National Renewable Energy Laboratory, NREL/TP-500-30070, 2001

    Google Scholar 

  34. Park JH, Park HY, Jeong SY (2010) Linear vibration analysis of rotating wind-turbine blade. Curr Appl Phys 10(2, Supplement 1):332–334

    Google Scholar 

  35. Sohn H, Czarnecki JA, Farrar CR (2000) Structural health monitoring using statistical process control. J Struct Eng 126(11):1356–1363

    Article  Google Scholar 

  36. Sohn H, Farrar CR, Hunter NF (2001) Structural health monitoring using statistical pattern recognition techniques. J Dyn Syst Meas Contr 123(4):706–711

    Article  Google Scholar 

  37. Lei Y, Kiremidjian AS, Nair KK et al (2003) Statistical damage detection using time series analysis on a structural health monitoring benchmark problem. In: Proceedings of the 9th international conference on applications of statistics and probability in civil engineering. San Francisco, CA, USA

    Google Scholar 

  38. Basseville M, Mevel L, Goursat M (2004) Statistical model-based damage detection and localization: subspaced-based residuals and damage-to-noise sensitivity ratios. J Sound Vib 275(3–5):769–794

    Article  Google Scholar 

  39. Kane TR, Ryan RR, Banerjee AK (1987) Dynamics of a cantilever beam attached to a moving base. J Guid Control Dyn 10:139–151

    Article  Google Scholar 

  40. Bakr EM, Shabana AA (1986) Geometrically nonlinear analysis of multibody system. Comp Struct 23:739–751

    Article  MATH  Google Scholar 

  41. Wallrapp O, Schwertassek R (1991) Representation of geometric stiffening in multibody system simulation. Int J Numer Meth Eng 32:1833–1850

    Article  MATH  Google Scholar 

  42. Mayo J, Dominguez J, Shabana AA (1995) Geometrically nonlinear formulation of beams in flexible multibody dynamics. J Vibr Acoust 117(4):501–509

    Article  Google Scholar 

  43. Park S, Lee J-J, Yun C-B, Inman DJ (2008) Electro-mechanical impedance-based wireless structural health monitoring using PCA-Data compression and k-means clustering algorithms. J Intell Mater Syst Struct 19(4):509–520

    Article  Google Scholar 

  44. Han S, Feeny BF (2002) Enhanced proper orthogonal decomposition for the modal analysis of homogeneous structures. J Vib Control 8(1):19–40

    Article  MATH  Google Scholar 

  45. Mei C, Fan J (2006) Methods for data analysis. Higher Education Press, Beijng

    Google Scholar 

  46. Ma J, Niu Y, Chen H (2006) Blind signal processing. National Defense Industry Press, Beijing

    Google Scholar 

  47. Bao X, Chen L (2011) Recent progress in Brillouin scattering based fiber sensors. Sensors 11(4):4152–4187

    Article  Google Scholar 

  48. Horiguchi T, Tateda M (1989) Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave. Opt Lett 14:408–410

    Article  Google Scholar 

  49. Li W, Bao X, Li Y et al (2008) Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt Express 16:21616–21625

    Article  Google Scholar 

  50. Dong Y, Bao X, Li W (2009) Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor. Appl Opt 48:4297–4301

    Article  Google Scholar 

  51. Cotter D (1983) Stimulated Brillouin scattering in monomode optical fiber. J Opt Commun 4(1):10–19

    Article  Google Scholar 

  52. Horiguchi T, Shimizu K, Kurashima T et al (1995) Development of a distributed sensing technique using Brillouin scattering. J Lightw Technol 13(7):296–302

    Google Scholar 

  53. White D (2004) New method for dual-axis fatigue testing of large wind turbine blades using resonance excitation and spectral loading. National Renewable Energy Laboratory, NREL/TP-500-35268

    Google Scholar 

  54. Minakuchi S et al (2009) Barely visible impact damage detection for composite sandwich structures by optical-fiber-based distributed strain measurement. Smart Mater Struct 18(8):085018

    Article  Google Scholar 

  55. Minakuchi S et al (2011) Life cycle monitoring of large-scale CFRP VARTM structure by fiber-optic-based distributed sensing. Compos A 42(6):669–676

    Article  Google Scholar 

  56. Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D 31(2):277–283

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, H., Zhou, W., Xu, J. (2014). Structural Health Monitoring of Wind Turbine Blades. In: Luo, N., Vidal, Y., Acho, L. (eds) Wind Turbine Control and Monitoring. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-08413-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08413-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08412-1

  • Online ISBN: 978-3-319-08413-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics