Skip to main content

Superconducting Quantum Metamaterials

  • Chapter
  • First Online:
Nonlinear, Tunable and Active Metamaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 200))

Abstract

Quantum metamaterials is a concept bridging the fields of conventional metamaterials and quantum processing in solid state. These are artificial media comprised of quantum coherent, specifically designed unit elements (e.g., qubits), such that the quantum state of these elements can be externally controlled, and that the system maintains quantum coherence on the characteristic times and scales of electromagnetic signal propagation through it. This chapter focuses on quantum metamaterials based on superconducting qubits, which—due to the developments in theory and experimental and fabrication techniques over the last decade—currently provide the most feasible implementation of the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a more detailed presentation see [10] and references therein.

  2. 2.

    The sine in (13.3) is characteristic for a tunneling junction. Generally, it can be replaced by a different odd function, depending on the properties of the weak link [17].

  3. 3.

    We will be using the Gaussian units throughout, as more convenient for our formalism.

  4. 4.

    The circuits we will be dealing with here do not contain resistive elements. In a general case, they can be taken care of through the so called dissipative function (see [10] and references therein).

  5. 5.

    The distinction is here purely notional—if instead of node fluxes, which are essentially currents, as follows from (13.15), we chose as coordinates the node charges, proportional to the voltages \(V_j\), the roles would have been reversed.

  6. 6.

    The approximation of a factorized wave function, (13.37), is quite a drastic simplification, since it excludes such macroscopic quantum superposition states as \((\dots \otimes |0\rangle \otimes |0\rangle \otimes |0\rangle \otimes \dots ) \pm (\dots \otimes |1\rangle \otimes |1\rangle \otimes |1\rangle \otimes \dots )\). Such GHz-like states are necessary for the realization of, e.g., quantum birefringence. Nevertheless even factorized states should give rise to interesting quantum effects [2], while both their theoretical treatment and experimental realization are significantly simpler.

  7. 7.

    A tunable classical transmission-line metamaterial was considered in [29], while a tunable classical left-handed transmission-line metamaterial was recently realized on experiment [30]. Both designs incorporate Josephson junctions.

References

  1. J. Plumridge et al., Solid State Comm. 146, 406 (2008)

    Article  ADS  Google Scholar 

  2. A. Rakhmanov et al., Phys. Rev. B 77, 144507 (2008)

    Article  ADS  Google Scholar 

  3. N.I. Zheludev, Science 328, 582 (2010)

    Article  ADS  Google Scholar 

  4. J.Q. Quach et al., Opt. Express 19, 11018 (2011)

    Article  ADS  Google Scholar 

  5. D. Felbacq, M. Antezza, SPIE Newsroom 2012, doi:10.1117/2.1201206.004296

  6. A.M. Zagoskin, J. Opt. 14, 114011 (2012)

    Article  ADS  Google Scholar 

  7. V. Savinov et al., Sci. Rep. 2, 450 (2012)

    Article  ADS  Google Scholar 

  8. N.I. Zheludev, Y.S. Kivshar, Nat. Mater. 11, 917 (2012)

    Article  ADS  Google Scholar 

  9. A.M. Zagoskin et al., arXiv:1211.4182 (2012); extended version: A.M. Zagoskin et al., Sci. Rep. 3, 3464 (2013)

  10. A.M. Zagoskin, Quantum Engineering: Theory and Design of Quantum Coherent Structures. (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  11. G. Wendin, V.S. Shumeiko, in Superconducting quantum circuits, qubits and compuing, ed. by M. Rieth, W. Schommers. Handbook of Theoretical and Computational Nanotechnology, vol. 3 (American Scientific Publishers, Los Angeles, 2005)

    Google Scholar 

  12. M.W. Johnson et al., Nature 473, 194 (2011)

    Article  ADS  Google Scholar 

  13. O. Astafiev et al., Science 327, 840 (2010)

    Article  ADS  Google Scholar 

  14. O. Astafiev et al., Phys. Rev. Lett. 104, 183603 (2010)

    Article  ADS  Google Scholar 

  15. A.A. Abdumalikov et al., Phys. Rev. Lett. 104, 193601 (2010)

    Article  ADS  Google Scholar 

  16. I.-C. Hoi et al., Phys. Rev. Lett. 107, 073601 (2011)

    Article  ADS  Google Scholar 

  17. A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982)

    Book  Google Scholar 

  18. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), 3rd edn. (Butterworth-Hrinemann, Oxford, 2003)

    Google Scholar 

  19. D.A. Wells, Schaum’s Outline of Theory and Problems of Lagrangian Dynamics (McGraw-Hill, New York, 1967)

    Google Scholar 

  20. M.H. Devoret, in Les Houches Session LXIII, 1995, eds. S. Reynaud, E. Giacobino, J. Zinn-Justin. Quantum Fluctuations in Electrical Circuits (Elsevier Science B.V., Amsterdam, 1997)

    Google Scholar 

  21. G. Burkard, Theory of solid state quantum information processing. In: Handbook of Theoretical and Computational Nanotechnology, vol. 2, eds. M. Rieth, W. Schommers (American Scientific Publishers, Los Angeles, 2005)

    Google Scholar 

  22. J. Martinis et al., Phys. Rev. Lett. 89, 117901 (2002)

    Article  ADS  Google Scholar 

  23. J.E. Mooij et al., Science 285, 1036 (1999)

    Article  Google Scholar 

  24. A.M. Zagoskin et al., phys. stat. solidi B 246, 955 (2009)

    Article  ADS  Google Scholar 

  25. P. Macha et al., arXiv:1309.5268 (2013)

  26. Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Nature 398, 786 (1999)

    Article  ADS  Google Scholar 

  27. J. Gambetta et al., Phys. Rev. A 74, 042318 (2006)

    Article  ADS  Google Scholar 

  28. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  29. C. Hutter et al., Phys. Rev. B 83, 014511 (2011)

    Article  ADS  Google Scholar 

  30. E. A. Ovchinnikova et al., arXiv:1309.7557 (2013)

  31. A. Shvetsov et al., Phys. Rev. B 87, 235410 (2013)

    Article  ADS  Google Scholar 

  32. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  33. Y.S. Greenberg et al., Phys. Rev. B 66, 214525 (2002)

    Article  ADS  Google Scholar 

  34. A. Blais et al., Phys. Rev. B 69, 062320 (2004)

    Article  Google Scholar 

  35. I. Percival, Quantum State Diffusion (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

Download references

Acknowledgments

I am greatly indebted to O. Astafiev, M. Everitt, E. Il’ichev, F. Nori, A.L. Rakhmanov, J.H. Samson, S. Saveliev and R.D. Wilson for their inspiring collaboration in developing this field and for many illuminating discussions. This work was supported by a grant from John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. Zagoskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zagoskin, A.M. (2015). Superconducting Quantum Metamaterials. In: Shadrivov, I., Lapine, M., Kivshar, Y. (eds) Nonlinear, Tunable and Active Metamaterials. Springer Series in Materials Science, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-08386-5_13

Download citation

Publish with us

Policies and ethics