Skip to main content

A Review of Statistical Approaches for the Analysis of Data in Rheumatology

  • Chapter
  • First Online:
Understanding Evidence-Based Rheumatology

Abstract

In this chapter we review common statistical methods used in medical studies and, in particular, in the field of rheumatology. We look at the choice of descriptive statistics, at statistical approaches for the comparison of treatments, and at methods to evaluate relationships between measurements. The reader is also introduced to Bayesian methods that have gained considerable popularity among statisticians and epidemiologists during the last decade. The focus will be on the intuitive ideas behind the methods rather than on their technical aspects. Practical guidelines are provided throughout the chapter as well as in a separate section. This will hopefully help in exercising good statistical practice (GSP). However, in view of the explosion of new statistical techniques, it is not realistic to give a comprehensive review. For the technical aspects of the statistical techniques, we refer the reader to other sources. The methods will be illustrated using rheumatoid arthritis data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R Development Core Team. R: a language and environment for statistical computing [computer software]. Vienna: R Foundation for Statistical Computing; 2010.

    Google Scholar 

  2. SAS® version 9.3 Cary, NC, USA, SAS Institute Inc. 2012.

    Google Scholar 

  3. IBM Corp. Released 2012. IBM SPSS statistics for windows, version 21.0. Armonk: IBM Corp.

    Google Scholar 

  4. Bland M. An introduction to medical statistics. 3rd ed. Oxford: Oxford University Press; 2002.

    Google Scholar 

  5. Petrie A, Sabin C. Medical statistics at a glance. 3rd ed. Chichester: Wiley; 2009.

    Google Scholar 

  6. Walter MJM, Mohd Din SH, Hazes JMW, Lesaffre E, Barendregt PJ, Luime JJ. Is tight controlled disease activity with online patient reported outcomes possible? J Rheumatol. 2014;41:640–7.

    Article  PubMed  Google Scholar 

  7. Van der Heijde D, Jacobs J. The original “DAS” and the “DAS28” are not interchangeable: comment on the articles by Prevoo et al. Arthritis Rheum. 1998;41:942–50.

    Article  PubMed  Google Scholar 

  8. Van der Heijde D, Van’t Hof M, Van Riel R, et al. Judging disease activity in clinical practice in rheumatoid arthritis: first step in the development of a disease activity score. Ann Rheum Dis. 1990;49:916–20.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bruce B, Fries J. The health assessment questionnaire (HAQ). Clin Exp Rheumatol. 2005;23:S14–8.

    CAS  PubMed  Google Scholar 

  10. Fransen J, Langenegger T, Michel B, Stucki G. Feasibility and validity of the RADAI, a self-administered rheumatoid arthritis disease activity index. Br Soc Rheumatol. 2000;39:321–7.

    Article  CAS  Google Scholar 

  11. Wolfe F. Fatigue assessments in rheumatoid arthritis: comparative performance of visual analog scales and longer fatigue questionnaires in 7760 patients. J Rheumatol. 2004;31:1896–902.

    PubMed  Google Scholar 

  12. Claessen SJ, Hazes JM, Huisman MA, van Zeben D, Luime JJ, Weel AE. Use of risk stratification to target therapies in patients with recent onset arthritis; design of a prospective randomized multicenter controlled trial. BMC Musculoskelet Disord. 2009;18(10):71.

    Article  Google Scholar 

  13. de Jong PH, Hazes JM, Barendregt PJ, et al. Induction therapy with a combination of DMARDs is better than methotrexate monotherapy: first results of the tREACH trial. Ann Rheum Dis. 2013;72(1):72–8.

    Article  PubMed  Google Scholar 

  14. Visser H, le Cessie S, Vos K, Breedveld FC, Hazes JM. How to diagnose rheumatoid arthritis early: a prediction model for persistent (erosive) arthritis. Arthritis Rheum. 2002;46(2):357–65.

    Article  PubMed  Google Scholar 

  15. Aletaha D, Neogi T, Silman AJ, et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–681.

    Article  PubMed  Google Scholar 

  16. Royall R. Statistical evidence. A likelihood paradigm. London: Chapman and Hall; 1997.

    Google Scholar 

  17. Svejgaard A, Ryder LP. HLA and disease associations: detecting the strongest association. Tissue Antigens. 1994;43:18–27.

    Article  CAS  PubMed  Google Scholar 

  18. Cox DR. Regression models and life-tables (with discussion). J R Stat Soc B. 1972;34:187–220.

    Google Scholar 

  19. Rizopoulos D. Joint models for longitudinal and time-to-event data: with applications in R. Boca Raton: Chapman and Hall/CRC; 2012.

    Book  Google Scholar 

  20. Little RJA, Rubin DB. Statistical analysis with missing data. 2nd ed. New York: Wiley; 2002.

    Book  Google Scholar 

  21. Lesaffre E. Longitudinal studies in rheumatology: some guidance for analysis. Bull NYU Hosp Jt Dis. 2012;70(2):65–72.

    PubMed  Google Scholar 

  22. Panel on Handling Missing Data in Clinical Trials; National Research Council. The prevention and treatment of missing data in clinical trials. Washington, DC: The National Academic Press; 2010.

    Google Scholar 

  23. Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. New York: Springer; 2000.

    Google Scholar 

  24. Molenberghs G, Verbeke G. Linear models for discrete longitudinal data. New York: Springer; 2005.

    Google Scholar 

  25. Lawton G, Bhakta BB, Chamberlain MA, Tennant A. The Behçet’s disease activity index. Rheumatology. 2004;43:73–8.

    Article  CAS  PubMed  Google Scholar 

  26. Molenberghs G, Kenward M. Missing data in clinical studies. West Sussex: Wiley; 2007.

    Book  Google Scholar 

  27. Tunc R, Keyman E, Melikoglu M, Fresko I, Yazici H. Target organ associations in Turkish patients with Behçet’s disease: a cross sectional study by exploratory factor analysis. J Rheumatol. 2002;29(11):2393–6.

    PubMed  Google Scholar 

  28. Gelfand AE, Smith AE. Sampling-based approaches to calculating marginal densities. J Am Stat Assoc. 1990;85:398–409.

    Article  Google Scholar 

  29. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Statistics Comput. 2000;10:325–37.

    Article  Google Scholar 

  30. Lesaffre E, Lawson A. Bayesian biostatistics (statistics in practice). New York: Wiley; 2012.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Lesaffre Dr. Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lesaffre, E., Luime, J. (2014). A Review of Statistical Approaches for the Analysis of Data in Rheumatology. In: Yazici, H., Yazici, Y., Lesaffre, E. (eds) Understanding Evidence-Based Rheumatology. Springer, Cham. https://doi.org/10.1007/978-3-319-08374-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08374-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08373-5

  • Online ISBN: 978-3-319-08374-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics