Skip to main content

Molecular Pathogenesis of Breast Cancer and the Role of MicroRNAs

  • Chapter
  • First Online:
miRNAs and Target Genes in Breast Cancer Metastasis

Part of the book series: SpringerBriefs in Cancer Research ((BRIEFSCANCER))

  • 636 Accesses

Abstract

Breast cancer is a leading cause of cancer-associated death in women worldwide. The therapy usually involves mastectomy or lumpectomy, followed by chemotherapy and/or radiation therapy in addition to hormonal therapy when indicated. While the area of research on the identification and potential use of microRNAs (miRNAs) as either a diagnostic, prognostic, or predictive biomarker is still in its early stages, there is increasing evidence that miRNAs are involved in tumor progression, chemoresistance, and survival. The miRNAs have enormous prospective in clinical research since they are detected in the serum, plasma, fresh tissues, and formalin-fixed paraffin-embedded tissue samples. Hence, it may be possible to develop novel therapeutic regimens of specific miRNAs as targets to prevent or treat breast cancer (BC). The miRNA expression profiling is now used extensively by many investigators to demonstrate specific miRNA signatures in both the body fluids and in the tumor tissue, indicating that miRNAs may likely be useful as diagnostic and prognostic tools in all cancers including BC. Numerous investigators, including our laboratory, have used strategies to deregulate miRNAs with either anti- and pre-miRNA molecular drugs or even natural compounds to prevent or control tumor progression, which will be discussed in this chapter. Moreover, the role of several natural and synthetic compounds as anticancer agents will also be discussed in this chapter. Finally, the role of several miRNAs as targets will be discussed especially because miRNA-based therapies are currently being exploited for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desantis C, Ma J, Bryan L, Jemal A (2013) Breast cancer statistics, 2013. CA Cancer J Clin 64(1):52–62, PM:24114568

    Article  PubMed  Google Scholar 

  2. Ali AS, Ahmad A, Ali S, Bao B, Philip PA, Sarkar FH (2013) The role of cancer stem cells and miRNAs in defining the complexities of brain metastasis. J Cell Physiol 228:36–42, PM:22689345 PMC3443527

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Sethi S, Ali S, Kong D, Philip PA, Sarkar FH (2013) Clinical implication of microRNAs in molecular pathology. Clin Lab Med 33:773–86, PM:24267185

    Article  PubMed  Google Scholar 

  4. Melo SA, Esteller M (2011) Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 585:2087–99, PM:20708002

    Article  PubMed  CAS  Google Scholar 

  5. Ali S, Almhanna K, Chen W, Philip PA, Sarkar FH (2010) Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am J Transl Res 3:28–47, PM:21139804 PMC2981424

    PubMed  PubMed Central  Google Scholar 

  6. Ali S, Saleh H, Sethi S, Sarkar FH, Philip PA (2012) MicroRNA profiling of diagnostic needle aspirates from patients with pancreatic cancer. Br J Cancer 107:1354–1360, PM:22929886 PMC3494446

    Google Scholar 

  7. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070, PM:16103053

    Google Scholar 

  8. Liu J, Mao Q, Liu Y, Hao X, Zhang S, Zhang J (2013) Analysis of miR-205 and miR-155 expression in the blood of breast cancer patients. Chin J Cancer Res 25:46–54, PM:23372341 PMC3555294

    Google Scholar 

  9. Peng X, Guo W, Liu T, Wang X, Tu X, Xiong D et al (2011) Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One 6:e20341, PM:21647377 PMC3103579

    Google Scholar 

  10. Wang Y, Gu J, Roth JA, Hildebrandt MA, Lippman SM, Ye Y et al (2013) Pathway-based serum microRNA profiling and survival in patients with advanced stage non-small cell lung cancer. Cancer Res 73:4801–4809, PM:23774211 PMC3760306

    Google Scholar 

  11. Ferracin M, Querzoli P, Calin GA, Negrini M (2011) MicroRNAs: toward the clinic for breast cancer patients. Semin Oncol 38:764–775, PM:22082762

    Google Scholar 

  12. Biragyn A, Bodogai M, Olkhanud PB, Denny-Brown SR, Puri N, Ayukawa K et al (2013) Inhibition of lung metastasis by chemokine CCL17-mediated in vivo silencing of genes in CCR4+ Tregs. J Immunother 36:258–267, PM:23603860 PMC3707614

    Google Scholar 

  13. Zhu W, Qin W, Atasoy U, Sauter ER (2009) Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2:89, PM:19454029 PMC2694820

    Google Scholar 

  14. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 5:e13735, PM:21060830 PMC2966402

    Google Scholar 

  15. Sethi S, Ali S, Kong D, Philip PA, Sarkar FH (2013) Clinical implication of microRNAs in molecular pathology. Clin Lab Med 33:773–786, PM:24267185

    Google Scholar 

  16. Czyzyk-Krzeska MF, Zhang X (2014) MiR-155 at the heart of oncogenic pathways. Oncogene 33(6):677–678, PM:23416982

    Google Scholar 

  17. Orso F, Balzac F, Marino M, Lembo A, Retta SF, Taverna D (2013) miR-21 coordinates tumor growth and modulates KRIT1 levels. Biochem Biophys Res Commun 438:90–96, PM:23872064 PMC3750217

    Google Scholar 

  18. Piva R, Spandidos DA, Gambari R (2013) From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment (Review). Int J Oncol 43:985–994, PM:23939688 PMC3829774

    Google Scholar 

  19. Sun X, Qin S, Fan C, Xu C, Du N, Ren H (2013) Let-7: a regulator of the ERalpha signaling pathway in human breast tumors and breast cancer stem cells. Oncol Rep 29:2079–2087, PM:23467929

    Google Scholar 

  20. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166, PM:17565689 PMC1904203

    Google Scholar 

  21. Gall TM, Frampton AE, Krell J, Castellano L, Stebbing J, Jiao LR (2013) Blood-based miRNAs as noninvasive diagnostic and surrogative biomarkers in colorectal cancer. Expert Rev Mol Diagn 13:141–145, PM:23477554

    Google Scholar 

  22. Si H, Sun X, Chen Y, Cao Y, Chen S, Wang H et al (2013) Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol 139:223–229, PM:23052693 PMC3549412

    Google Scholar 

  23. Chen Y, Gelfond JA, McManus LM, Shireman PK (2009) Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics 10:407, PM:19715577 PMC2753550

    Google Scholar 

  24. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752, PM:10963602

    Google Scholar 

  25. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539–548, PM:11207349

    Google Scholar 

  26. Tang P, Skinner KA, Hicks DG (2009) Molecular classification of breast carcinomas by immunohistochemical analysis: are we ready? Diagn Mol Pathol 18:125–132, PM:19704256

    Google Scholar 

  27. Gruver AM, Portier BP, Tubbs RR (2011) Molecular pathology of breast cancer: the journey from traditional practice toward embracing the complexity of a molecular classification. Arch Pathol Lab Med 135:544–557, PM:21526953

    Google Scholar 

  28. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867, PM:17194750 PMC1820461

    Google Scholar 

  29. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908, PM:17473300

    Google Scholar 

  30. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P et al (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25:387–392, PM:17826655

    Google Scholar 

  31. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198, PM:16530703

    Google Scholar 

  32. Feber A, Xi L, Luketich JD, Pennathur A, Landreneau RJ, Wu M et al (2008) MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 135:255–260, PM:18242245 PMC2265073

    Google Scholar 

  33. Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K et al (2009) Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 125:345–352, PM:19378336

    Google Scholar 

  34. Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G et al (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67:11612–11620, PM:18089790

    Google Scholar 

  35. Nassirpour R, Mehta PP, Baxi SM, Yin MJ (2013) miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS One 8:e62170, PM:23637992 PMC3634767

    Google Scholar 

  36. Qi L, Bart J, Tan LP, Platteel I, Sluis T, Huitema S et al (2009) Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer 9:163, PM:19473551 PMC2695476

    Google Scholar 

  37. Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM et al (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70:3606–3617, PM:20388782 PMC2978024

    Google Scholar 

  38. Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S et al (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 6:e17850, PM:21408027 PMC3052388

    Google Scholar 

  39. Roy S, Yu Y, Padhye SB, Sarkar FH, Majumdar AP (2013) Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21. PLoS One 8:e68543, PM:23894315 PMC3722247

    Google Scholar 

  40. Chen J, Wang X (2014) MicroRNA-21 in breast cancer: diagnostic and prognostic potential. Clin Transl Oncol 16(3):225–233, PM:24248894

    Google Scholar 

  41. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803, PM:17072344

    Google Scholar 

  42. Chen L, Li Y, Fu Y, Peng J, Mo MH, Stamatakos M et al (2013) Role of deregulated microRNAs in breast cancer progression using FFPE tissue. PLoS One 8:e54213, PM:23372687 PMC3553092

    Google Scholar 

  43. Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D et al (2010) MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 285:17869–17879, PM:20371610 PMC2878550

    Google Scholar 

  44. O’Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12:201, PM:20346098 PMC2879559

    Google Scholar 

  45. Zheng SR, Guo GL, Zhai Q, Zou ZY, Zhang W (2013) Effects of miR-155 antisense oligonucleotide on breast carcinoma cell line MDA-MB-157 and implanted tumors. Asian Pac J Cancer Prev 14:2361–2366, PM:23725141

    Google Scholar 

  46. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358, PM:16039986

    Google Scholar 

  47. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688, PM:17898713

    Google Scholar 

  48. Tan HX, Wang Q, Chen LZ, Huang XH, Chen JS, Fu XH et al (2010) MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Med Oncol 27:654–660, PM:19572217

    Google Scholar 

  49. Chan M, Liaw CS, Ji SM, Tan HH, Wong CY, Thike AA et al (2013) Identification of circulating microRNA signatures for breast cancer detection. Clin Cancer Res 19:4477–4487, PM:23797906

    Google Scholar 

  50. Zhao G, Guo J, Li D, Jia C, Yin W, Sun R et al (2013) MicroRNA-34a suppresses cell proliferation by targeting LMTK3 in human breast cancer MCF-7 cell line. DNA Cell Biol 32:699–707, PM:24050776 PMC3864372

    Google Scholar 

  51. Guo J, Li W, Shi H, Xie X, Li L, Tang H et al (2013) Synergistic effects of curcumin with emodin against the proliferation and invasion of breast cancer cells through upregulation of miR-34a. Mol Cell Biochem 382:103–111, PM:23771315

    Google Scholar 

  52. Li XJ, Ji MH, Zhong SL, Zha QB, Xu JJ, Zhao JH et al (2012) MicroRNA-34a modulates chemosensitivity of breast cancer cells to adriamycin by targeting Notch1. Arch Med Res 43:514–521, PM:23085450

    Google Scholar 

  53. Nugent M, Miller N, Kerin MJ (2012) Circulating miR-34a levels are reduced in colorectal cancer. J Surg Oncol 106:947–952, PM:22648208

    Google Scholar 

  54. Wang S, Huang J, Lyu H, Lee CK, Tan J, Wang J et al (2013) Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis 4:e556, PM:23519125 PMC3615747

    Google Scholar 

  55. Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC (2007) Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282:1479–1486, PM:17110380

    Google Scholar 

  56. Guo X, Wu Y, Hartley RS (2009) MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol 6:575–583, PM:19875930 PMC3645467

    Google Scholar 

  57. Ahmad A, Aboukameel A, Kong D, Wang Z, Sethi S, Chen W et al (2011) Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res 71:3400–3409, PM:21389093 PMC3085607

    Google Scholar 

  58. Creighton CJ, Gibbons DL, Kurie JM (2013) The role of epithelial-mesenchymal transition programming in invasion and metastasis: a clinical perspective. Cancer Manag Res 5:187–195, PM:23986650 PMC3754282

    Google Scholar 

  59. Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S et al (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5:e12445, PM:20805998 PMC2929211

    Google Scholar 

  60. Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA et al (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69:6704–6712, PM:19654291 PMC2727571

    Google Scholar 

  61. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907, PM:18381893 PMC2279201

    Google Scholar 

  62. Li X, Roslan S, Johnstone CN, Wright JA, Bracken CP, Anderson M et al (2013) MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene. doi:10.1038/onc.2013.370, PM:24037528

  63. Manavalan TT, Teng Y, Litchfield LM, Muluhngwi P, Al-Rayyan N, Klinge CM (2013) Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells. PLoS One 8:e62334, PM:23626803 PMC3633860

    Google Scholar 

  64. Bai JX, Yan B, Zhao ZN, Xiao X, Qin WW, Zhang R et al (2013) Tamoxifen represses miR-200 microRNAs and promotes epithelial-to-mesenchymal transition by up-regulating c-Myc in endometrial carcinoma cell lines. Endocrinology 154:635–645, PM:23295740

    Google Scholar 

  65. Lim YY, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E et al (2013) Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci 126:2256–2266, PM:23525011

    Google Scholar 

  66. Li Z, Xiao J, Wu X, Li W, Yang Z, Xie J et al (2012) Plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment. Curr Mol Med 12:967–981, PM:22574935

    Google Scholar 

  67. Ahmad A, Wang Z, Ali R, Maitah MY, Kong D, Banerjee S et al (2010) Apoptosis-inducing effect of garcinol is mediated by NF-kappaB signaling in breast cancer cells. J Cell Biochem 109:1134–1141, PM:20108249

    Google Scholar 

  68. Ahmad A, Wang Z, Wojewoda C, Ali R, Kong D, Maitah MY et al (2011) Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- kappaB signaling. Front Biosci (Elite Ed) 3:1483–1492, PM:21622152

    Google Scholar 

  69. Ahmad A, Sarkar SH, Bitar B, Ali S, Aboukameel A, Sethi S et al (2012) Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther 11:2193–2201, PM:22821148 PMC3836047

    Google Scholar 

  70. Chen CS, Lee CH, Hsieh CD, Ho CT, Pan MH, Huang CS et al (2011) Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins. Breast Cancer Res Treat 125:73–87, PM:20229177

    Google Scholar 

  71. Cheng AC, Tsai ML, Liu CM, Lee MF, Nagabhushanam K, Ho CT et al (2010) Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis. Food Funct 1:301–307, PM:21776480

    Google Scholar 

  72. K A T, T R, G R, K C S, Nair RS, G S et al (2013) Structure activity relationship of plumbagin in BRCA1 related cancer cells. Mol Carcinog 52:392–403, PM:22290577

    Google Scholar 

  73. Lee JH, Yeon JH, Kim H, Roh W, Chae J, Park HO et al (2012) The natural anticancer agent plumbagin induces potent cytotoxicity in MCF-7 human breast cancer cells by inhibiting a PI-5 kinase for ROS generation. PLoS One 7:e45023, PM:23028742 PMC3441601

    Google Scholar 

  74. Manu KA, Shanmugam MK, Rajendran P, Li F, Ramachandran L, Hay HS et al (2011) Plumbagin inhibits invasion and migration of breast and gastric cancer cells by downregulating the expression of chemokine receptor CXCR4. Mol Cancer 10:107, PM:21880153 PMC3175200

    Google Scholar 

  75. Masuelli L, Benvenuto M, Fantini M, Marzocchella L, Sacchetti P, Di SE et al (2013) Curcumin induces apoptosis in breast cancer cell lines and delays the growth of mammary tumors in neu transgenic mice. J Biol Regul Homeost Agents 27:105–119, PM:23489691

    Google Scholar 

  76. Sun SH, Huang HC, Huang C, Lin JK (2012) Cycle arrest and apoptosis in MDA-MB-231/Her2 cells induced by curcumin. Eur J Pharmacol 690:22–30, PM:22705896

    Google Scholar 

  77. Shehzad A, Khan S, Sup LY (2012) Curcumin molecular targets in obesity and obesity-related cancers. Future Oncol 8:179–190, PM:22335582

    Google Scholar 

  78. Yodkeeree S, Ampasavate C, Sung B, Aggarwal BB, Limtrakul P (2010) Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line. Eur J Pharmacol 627:8–15, PM:19818349

    Google Scholar 

  79. Kanwar SS, Yu Y, Nautiyal J, Patel BB, Padhye S, Sarkar FH et al (2011) Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res 28:827–838, PM:21161336 PMC3792588

    Google Scholar 

  80. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98, PM:16459310

    Google Scholar 

  81. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017, PM:19524505 PMC2722880

    Google Scholar 

  82. Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93:98–104, PM:23212103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ali, S., Sethi, S., Ali, A.S., Philip, P.A., Sarkar, F.H. (2014). Molecular Pathogenesis of Breast Cancer and the Role of MicroRNAs. In: miRNAs and Target Genes in Breast Cancer Metastasis. SpringerBriefs in Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-08162-5_2

Download citation

Publish with us

Policies and ethics