Skip to main content

Valuation of Structured Financial Products by Adaptive Multiwavelet Methods in High Dimensions

  • Chapter
  • First Online:
Extraction of Quantifiable Information from Complex Systems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 102))

Abstract

We introduce a new numerical approach to value structured financial products. These financial products typically feature a large number of underlying assets and require the explicit modeling of the dependence structure of these assets. We follow the approach of Kraft and Steffensen (Rev Finance 11:209–252, 2006), who explicitly describe the possible value combinations of the assets via a Markov chain with a portfolio state space. As the number of states increases exponentially with the number of assets in the portfolio, this model so far has been – despite its theoretical appeal – not computationally tractable. The price of a structured financial product in this model is determined by a coupled system of parabolic PDEs, describing the value of the portfolio for each state of the Markov chain depending on the time and macroeconomic state variables. A typical portfolio of n assets leads to a system of N = 2n coupled parabolic partial differential equations. It is shown that this high number of PDEs can be solved by combining an adaptive multiwavelet method with the Hierarchical Tucker Format. We present numerical results for n = 128.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With a slight abuse of notation, we set \(\mathbb{R}^{\mathcal{I}} =\ell _{2}(\mathcal{I})\) for any countable (possibly infinite) set \(\mathcal{I}\) as well as \(\mathbb{R}^{\mathcal{I}\times \mathcal{I}}\) as the set of linear operators from \(\ell_{2}(\mathcal{I})\) into \(\ell_{2}(\mathcal{I})\).

  2. 2.

    The indexation here is adapted to our problem at hand and thus differs from the standard literature on the Hierarchical Tucker Format.

  3. 3.

    By span(A) we denote the linear span of the column vectors of a matrix A.

References

  1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Google Scholar 

  2. Bachmayr, M., Dahmen, W.: Adaptive near-optimal rank tensor approximation for high-dimensional operator equations. IGPM Report 363, RWTH Aachen (2013)

    Google Scholar 

  3. Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. Numer. Linear Algebra Appl. 20(1), 27–43 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ballani, J., Grasedyck, L., Kluge, M.: Black box approximation of tensors in hierarchical Tucker format. Linear Algebra Appl. 438(2), 639–657 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C.R. Math. 339(9), 667–672 (2004)

    Google Scholar 

  6. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX + XB = C [F4]. Commun. ACM 15(9), 820–826 (1972)

    Article  Google Scholar 

  7. Beaudry, P., Lahiri, A.: Risk allocation, debt fueled expansion and financial crisis. Working Paper 15110, National Bureau of Economic Research (2009)

    Google Scholar 

  8. Bielecki, T.R., Rutowski, M.: Credit Risk: Modeling, Valuation and Hedging. Springer, Berlin/Heidelberg/New York (2002)

    Google Scholar 

  9. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An updated set of basic linear algebra subprograms. ACM Trans. Math. Softw. 28(2), 135–151 (2002)

    Article  Google Scholar 

  10. Bluhm, C., Overbeck, L.: Structured Credit Portfolio Analysis, Baskets and CDOs. Chapman and Hall, Boca Raton/London/New York (2007)

    MATH  Google Scholar 

  11. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70(233), 27–75 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math. 2(3), 203–245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dijkema, T.J., Schwab, C., Stevenson, R.: An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30, 423–455 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.S.: A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

    Google Scholar 

  15. Dongarra, J.J., Du Croz, J., Hammarling, S., Hanson, R.J.: An extended set of Fortran basic linear algebra subprograms. ACM Trans. Math. Softw. 14, 1–17 (1986)

    Google Scholar 

  16. Donovan, G., Geronimo, J., Hardin, D.: Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30(5), 1029–1056 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dwyer, G.P.: Financial innovation and the financial crisis of 2007–2008. Papeles de Economia Espana 130 (2012)

    Google Scholar 

  18. Epsig, M., Grasedyck, L., Hackbusch, W.: Black box low tensor-rank approximation using fiber-crosses. Constr. Approx. 30(3), 557–597 (2009)

    Article  MathSciNet  Google Scholar 

  19. Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78(3), 373–401 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. App. 31(4), 2029–2054 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hilber, N., Kehtari, S., Schwab, C., Winter, C.: Wavelet finite element method for option pricing in highdimensional diffusion market models. Research Report 01, ETH Zürich (2010)

    Google Scholar 

  23. Jarrow, R.A.: The role of ABS, CDS and CDOs in the credit crisis and the economy. Working Paper (2012)

    Google Scholar 

  24. Kestler, S.: On the adaptive tensor product wavelet Galerkin method with applications in finance. Ph.D. thesis, Ulm University (2013)

    Google Scholar 

  25. Kestler, S., Steih, K., Urban, K.: An efficient space-time adaptive wavelet Galerkin method for time-periodic parabolic partial differential equations. Report 06, Ulm University (2013)

    Google Scholar 

  26. Kraft, H., Steffensen, M.: Bankruptcy, counterparty risk, and contagion. Rev. Finance 11, 209–252 (2006)

    Article  Google Scholar 

  27. Kressner, D., Tobler, C.: Algorithm 941: htucker – a Matlab toolbox for tensors in hierarchical Tucker format. ACM Trans. Math. Software 40(3), Art. 22, 22 pp. (2014)

    Google Scholar 

  28. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic linear algebra subprograms for fortran usage. ACM Trans. Math. Softw. 5(3), 308–323 (1979)

    Article  MATH  Google Scholar 

  29. Lehn, M.: FLENS – a flexible library for efficient numerical solutions. Ph.D. thesis, Ulm University (2008)

    Google Scholar 

  30. Lehn, M., Stippler, A., Urban, K.: FLENS – a flexible library for efficient numerical solutions. In: Proceedings of Equadiff 11, pp. 467–473. Comenius University Press, Bratislava (SK) (2007)

    Google Scholar 

  31. van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1–2), 85–100 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nochetto, R., Siebert, K., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)

    Chapter  Google Scholar 

  33. Nouy, A.: A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199(23–24), 1603–1626 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pflüger, D.: Spatially adaptive sparse grids for high-dimensional problems. Ph.D. thesis, TU München (2010)

    Google Scholar 

  35. Reisinger, C., Wittum, G.: Efficient hierarchical approximation of high-dimensional option pricing problems. SIAM J. Sci. Comput. 29(1), 440–458 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rupp, A.J.: High dimensional wavelet methods for structured financial products. Ph.D. thesis, Ulm University (2013)

    Google Scholar 

  37. Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schwab, C., Stevenson, R.P.: Fast evaluation of nonlinear functionals of tensor product wavelet expansions. Numer. Math. 119(4), 765–786 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Steeb, W.H., Shi, T.K.: Matrix Calculus and Kronecker Product with Applications and C++ Programs. World Scientific, Singapore/River Edge/London (1997)

    Book  MATH  Google Scholar 

  40. Stippler, A.: LAWA – Library for Adaptive Wavelet Applications (2013). http://lawa.sourceforge.net/index.html

  41. Swesty, F.D., Smolarski, D.C., Syalor, P.E.: A comparison of algorithms for the efficient solution of the linear systems arising from multigroup flux-limited diffusion problems. Astrophys. J. 153, 369–387 (2004)

    Article  Google Scholar 

  42. Sylvester, J.J.: Sur l’equations en matrices px = xq. C. R. Acad. Sci. Paris 99, 67–71 (1884)

    Google Scholar 

  43. Tavakoli, J.M.: Collateralized Debt Obligations and Structured Finance. Wiley, Hoboken (2003)

    Google Scholar 

  44. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  45. Urban, K.: Wavelet Methods for Elliptic Partial Differential Equations. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  46. Urban, K., Patera, A.T.: A new error bound for reduced basis approximation of parabolic partial differential equations. C. R. Math. 350(3–4), 203–207 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Kiesel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kiesel, R., Rupp, A., Urban, K. (2014). Valuation of Structured Financial Products by Adaptive Multiwavelet Methods in High Dimensions. In: Dahlke, S., et al. Extraction of Quantifiable Information from Complex Systems. Lecture Notes in Computational Science and Engineering, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-319-08159-5_16

Download citation

Publish with us

Policies and ethics