Skip to main content

Error Bound for Hybrid Models of Two-Scaled Stochastic Reaction Systems

  • Chapter
  • First Online:
Extraction of Quantifiable Information from Complex Systems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 102))

Abstract

Biochemical reaction systems are often modeled by a Markov jump process in order to account for the discreteness of the populations and the stochastic nature of their evolution. The associated time-dependent probability distribution is the solution of the Chemical Master Equation (CME), but solving the CME numerically is a considerable challenge due to the high dimension of the state space. In many applications, however, species with rather small population numbers interact with abundant species, and only the former group exhibits stochastic behavior. This has motivated the derivation of hybrid models where a low-dimensional CME is coupled to a set of ordinary differential equations representing the abundant species. Using such a hybrid model decreases the number of unknowns significantly but – in addition to the numerical error – causes a modeling error. We investigate the accuracy of the MRCE (= model reduction based on conditional expectations) approach with respect to a particular scaling of the reaction system and prove that the error is proportional to the scaling parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not make this dependency explicit in the notation in order to keep the equations as simple as possible.

  2. 2.

    The remainder term R j is not to be mixed up with the reaction channel R j in (15.1).

References

  1. Burrage, K., Hegland, M., MacNamara, S., Sidje, R.B.: A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems. In: Langville, A.N., Stewart, W.J. (eds.) Markov Anniversary Meeting: An International Conference to Celebrate the 150th Anniversary of the Birth of A.A. Markov, Charleston, pp. 21–38. Boson Books (2006)

    Google Scholar 

  2. Dolgov, S.V., Khoromskij, B.N.: Tensor-product approach to global time-space-parametric discretization of chemical master equation. Technical report, Max-Planck-Institut für Mathematik in den Naturwissenschaften (2012)

    Google Scholar 

  3. Engblom, S.: Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180(2), 498–515 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Engblom, S.: Spectral approximation of solutions to the chemical master equation. J. Comput. Appl. Math. 229(1), 208–221 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ferm, L., Lötstedt, P., Hellander, A.: A hierarchy of approximations of the master equation scaled by a size parameter. J. Sci. Comput. 34, 127–151 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  7. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)

    Article  Google Scholar 

  8. Griebel, M., Jager, L.: The BGY3dM model for the approximation of solvent densities. J. Chem. Phys. 129(17), 174,511–174,525 (2008)

    Article  Google Scholar 

  9. Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.: Method of conditional moments for the chemical master equation. J. Math. Biol. (2013, Publication online) (Technical report)

    Google Scholar 

  10. Hegland, M., Garcke, J.: On the numerical solution of the chemical master equation with sums of rank one tensors. In: McLean, W., Roberts, A.J. (eds.) Proceedings of the 15th Biennial Computational Techniques and Applications Conference (CTAC-2010), Sydney, pp. C628–C643 (2011)

    Google Scholar 

  11. Hegland, M., Hellander, A., Lötstedt, P.: Sparse grids and hybrid methods for the chemical master equation. BIT 48, 265–284 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hellander, A., Lötstedt, P.: Hybrid method for the chemical master equation. J. Comput. Phys. 227, 100–122 (2007)

    Article  MATH  Google Scholar 

  13. Henzinger, T., Mateescu, M., Mikeev, L., Wolf, V.: Hybrid numerical solution of the chemical master equation. In: Quaglia, P. (ed.) Proceedings of the 8th International Conference on Computational Methods in Systems Biology (CMSB’10), Trento, pp. 55–65. ACM (2010)

    Google Scholar 

  14. Higham, D.J.: Modeling and simulating chemical reactions. SIAM Rev. 50(2), 347–368 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Iedema, P.D., Wulkow, M., Hoefsloot, H.C.J.: Modeling molecular weight and degree of branching distribution of low-density polyethylene. Macromolecules 33, 7173–7184 (2000)

    Article  Google Scholar 

  16. Jahnke, T.: An adaptive wavelet method for the chemical master equation. SIAM J. Sci. Comput. 31(6), 4373–4394 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jahnke, T.: On reduced models for the chemical master equation. SIAM Multiscale Model. Simul. 9(4), 1646–1676 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jahnke, T., Huisinga, W.: A dynamical low-rank approach to the chemical master equation. Bull. Math. Biol. 70(8), 2283–2302 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jahnke, T., Kreim, M.: Error bound for piecewise deterministic processes modeling stochastic reaction systems. SIAM Multiscale Model. Simul. 10(4), 1119–1147 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jahnke, T., Udrescu, T.: Solving chemical master equations by adaptive wavelet compression. J. Comput. Phys. 229(16), 5724–5741 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kazeev, V., Khammash, M., Nip, M., Schwab, C.: Direct solution of the chemical master equation using quantized tensor trains. Technical report, ETH Zurich (2013)

    Google Scholar 

  22. Kazeev, V., Schwab, C.: Tensor approximation of stationary distributions of chemical reaction networks. Technical report, ETH Zurich (2013)

    Google Scholar 

  23. Kurtz, T.G.: The relationship between stochastic and deterministic models of chemical reactions. J. Chem. Phys. 57, 2976–2978 (1973)

    Article  Google Scholar 

  24. Lötstedt, P., Ferm, L.: Dimensional reduction of the Fokker-Planck equation for stochastic chemical reactions. Multiscale Model. Simul. 5, 593–614 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Menz, S., Latorre, J.C., Schütte, C., Huisinga, W.: Hybrid stochastic-deterministic solution of the chemical master equation. SIAM Multiscale Model. Simul. 10(4), 1232–1262 (2012)

    Article  MATH  Google Scholar 

  26. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044,104 (2006)

    Article  Google Scholar 

  27. Sunkara, V.: Analysis and numerics of the chemical master equation. Ph.D. thesis, Australian National University (2013)

    Google Scholar 

  28. Sunkara, V.: Finite state projection method for hybrid models. Technical report, Karlsruhe Institute of Technology (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Jahnke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jahnke, T., Sunkara, V. (2014). Error Bound for Hybrid Models of Two-Scaled Stochastic Reaction Systems. In: Dahlke, S., et al. Extraction of Quantifiable Information from Complex Systems. Lecture Notes in Computational Science and Engineering, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-319-08159-5_15

Download citation

Publish with us

Policies and ethics