Skip to main content

Targeted Liposomes and Micelles as Carriers for Cancer Therapy

  • Chapter
  • First Online:
Nano-Oncologicals

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Targeted self-assembly drug delivery systems, including liposomes and micelles, have been developed for cancer therapy to improve therapeutic effects and to minimize potential drug toxicity. A variety of targeting strategies, such as active targeting, tumor microenvironment responsive targeting and triggered targeting, have given crucial pulses to the design and development of novel drug delivery systems for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

9-NC:

9-Nitro-camptothecin

CMC:

Critical micellar concentration

CPT:

Camptothecin

DHPC:

Diheptanolyphosphatidylcholine

DPPC:

1,2-Dipalmitoyl-sn-glycero-2-phosphocholine

DPPGOG:

1,2-Dipalmitoyl-sn-glycero-3-phosphoglyceroglycerol

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptors

ELP:

Elastin-like polypeptide

EPR:

Enhanced permeability and retention

FRV:

Freeze-dried rehydration vesicle

LCST:

Low critical solution temperature

MDR:

Multidrug resistance

MLV:

Multilamellar large vesicle

MMPs:

Matrix metalloproteinases

MPS:

Mononuclear phagocyte system

PEG-b-PDLA:

Poly(ethylene glycol)-b-poly(d-lactic acid)

PEG-b-PLLA:

Poly(ethylene glycol)-b-poly(l-lactic acid)

PEG-DSPE:

Poly(ethyl glycol)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine

PEG-PCL:

Poly(ethylene glycol)-b-poly(ε-caprolactone)

PFP:

Perfluoropentane

pHLIP:

Low pH inserting peptide

PIC:

Polyion complex micelle

PNIPPAm:

Poly(N-isopropylacrylamide)

RES:

Reticuloendothelial system

REV:

Reverse-phase evaporation vesicle

sPLA2 :

Secretory phospholipase A2

SUV:

Small unilamellar vesicle

TEM:

Transmission electron microscopy

TfR:

Transferrin receptor

uPA:

Urokinase plasminogen activator

uPAR:

Urokinase plasminogen activator receptor

VEGFR:

Vascular endothelial growth factor receptor

References

  • Adams GP et al (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61(12):4750–4755

    PubMed  CAS  Google Scholar 

  • Andreev OA et al (2007) Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proc Natl Acad Sci U S A 104(19):7893–7898

    PubMed  CAS  PubMed Central  Google Scholar 

  • Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44(1):68–97

    PubMed  CAS  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380

    PubMed  CAS  Google Scholar 

  • Arruebo M, Fernandez-Pacheco R, Ibarra MR, Santamaria J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Google Scholar 

  • Banerjee R, Tyagi P, Li S, Huang L (2004) Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int J Cancer 112(4):693–700

    PubMed  CAS  Google Scholar 

  • Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    PubMed  CAS  Google Scholar 

  • Bangham AD, Hill MW, Miller NGA (1974) Preparation and use of liposomes as models of biological membranes. Plenum

    Google Scholar 

  • Bondurant B, Mueller A, O’Brien DF (2001) Photoinitiated destabilization of sterically stabilized liposomes. Biochim Biophys Acta 1511(1):113–122

    PubMed  CAS  Google Scholar 

  • Boulikas T (2009) Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs 18(8):1197–1218

    PubMed  CAS  Google Scholar 

  • Brandl M, Bachmann D, Drechsler M, Bauer KH (1990) Liposome preparation by a new high pressure homogenizer Gaulin Micron Lab 40. Drug Dev Ind Pharm 16(14):2167–2197

    CAS  Google Scholar 

  • Brunner J, Skrabal P, Hauser H (1976) Single bilayer vesicles prepared without sonication. Physico-chemical properties. Biochim Biophys Acta 455(2):322–331

    PubMed  CAS  Google Scholar 

  • Cantero D et al (1997) Enhanced expression of urokinase plasminogen activator and its receptor in pancreatic carcinoma. Br J Cancer 75(3):388–395

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cao ZH et al (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed Engl 48(35):6494–6498

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    PubMed  CAS  Google Scholar 

  • Chen WH, Regen SL (2005) Thermally gated liposomes. J Am Chem Soc 127(18):6538–6539

    PubMed  CAS  Google Scholar 

  • Chen C et al (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature 500(7463):486–489

    PubMed  CAS  Google Scholar 

  • Cho KJ, Wang X, Nie SM, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    PubMed  CAS  Google Scholar 

  • Costantini V et al (1996) Combined overexpression of urokinase, urokinase receptor, and plasminogen activator inhibitor-1 is associated with breast cancer progression – an immunohistochemical comparison of normal, benign, and malignant breast tissues. Cancer 77(6):1079–1088

    PubMed  CAS  Google Scholar 

  • Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    PubMed  CAS  Google Scholar 

  • Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A 100(26):15416–15421

    PubMed  CAS  PubMed Central  Google Scholar 

  • Daumar P et al (2012) Efficient (18)F-labeling of large 37-amino-acid pHLIP peptide analogues and their biological evaluation. Bioconjug Chem 23(8):1557–1566

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dreher MR et al (2008) Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J Am Chem Soc 130(2):687–694

    PubMed  CAS  PubMed Central  Google Scholar 

  • Du JZ, Du XJ, Mao CQ, Wang J (2011) Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133(44):17560–17563

    PubMed  CAS  Google Scholar 

  • Dubey PK, Mishra V, Jain S, Mahor S, Vyas SP (2004) Liposomes modified with cyclic RGD peptide for tumor targeting. J Drug Target 12(5):257–264

    PubMed  CAS  Google Scholar 

  • Dvir T, Banghart MR, Timko BP, Langer R, Kohane DS (2010) Photo-targeted nanoparticles. Nano Lett 10(1):250–254

    PubMed  CAS  PubMed Central  Google Scholar 

  • Exner AA, Krupka TM, Scherrer K, Teets JM (2005) Enhancement of carboplatin toxicity by Pluronic block copolymers. J Control Release 106(1–2):188–197

    PubMed  CAS  Google Scholar 

  • Feron O (2010) Tumor-penetrating peptides: a shift from magic bullets to magic guns. Sci Transl Med 2(34)

    Google Scholar 

  • Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175(3):409–416

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 64(11):1005–1020

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101(4):937–949

    PubMed  CAS  Google Scholar 

  • Gavrilov D, Kenzior O, Evans M, Calaluce R, Folk WR (2001) Expression of urokinase plasminogen activator and receptor in conjunction with the ets family and AP-1 complex transcription factors in high grade prostate cancers. Eur J Cancer 37(8):1033–1040

    PubMed  CAS  Google Scholar 

  • Gelmon KA et al (1999) Phase I study of liposomal vincristine. J Clin Oncol 17(2):697–705

    PubMed  CAS  Google Scholar 

  • Goodwin AP, Mynar JL, Ma YZ, Fleming GR, Frechet JMJ (2005) Synthetic micelle sensitive to IR light via a two-photon process. J Am Chem Soc 127(28):9952–9953

    PubMed  CAS  Google Scholar 

  • Goren D et al (2000) Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res 6(5):1949–1957

    PubMed  CAS  Google Scholar 

  • Guaglianone P et al (1994) Phase I and pharmacologic study of liposomal daunorubicin (DaunoXome). Invest New Drugs 12(2):103–110

    PubMed  CAS  Google Scholar 

  • Han X et al (2009) 9-NC-loaded folate-conjugated polymer micelles as tumor targeted drug delivery system: preparation and evaluation in vitro. Int J Pharm 372(1–2):125–131

    PubMed  CAS  Google Scholar 

  • Hu KL et al (2009) Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release 134(1):55–61

    PubMed  CAS  Google Scholar 

  • Huai Q et al (2006) Structure of human urokinase plasminogen activator in complex with its receptor. Science 311(5761):656–659

    PubMed  CAS  Google Scholar 

  • Huang C (1969) Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 8(1):344–352

    PubMed  CAS  Google Scholar 

  • Huang SL, MacDonald RC (2004) Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta 1665(1–2):134–141

    PubMed  CAS  Google Scholar 

  • Hubert B, Helmut R, Brigitta S (1984) Watersoluble polymers in medicine. Die Angewandte Makromolekulare Chemie 123(1):457–485

    Google Scholar 

  • Hunt JF, Rath P, Rothschild KJ, Engelman DM (1997) Spontaneous, pH-dependent membrane insertion of a transbilayer alpha-helix. Biochemistry 36(49):15177–15192

    PubMed  CAS  Google Scholar 

  • Ishida O et al (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18(7):1042–1048

    PubMed  CAS  Google Scholar 

  • Janssen AP et al (2003) Peptide-targeted PEG-liposomes in anti-angiogenic therapy. Int J Pharm 254(1):55–58

    PubMed  CAS  Google Scholar 

  • Jiang JQ, Tong X, Morris D, Zhao Y (2006) Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules 39(13):4633–4640

    CAS  Google Scholar 

  • Johnson SM, Bangham AD, Hill MW, Korn ED (1971) Single bilayer liposomes. Biochim Biophys Acta 233(3):820–826

    PubMed  CAS  Google Scholar 

  • Jorgensen K, Vermehren C, Mouritsen OG (1999) Enhancement of phospholipase A2 catalyzed degradation of polymer grafted PEG-liposomes: effects of lipopolymer-concentration and chain-length. Pharm Res 16(9):1491–1493

    PubMed  CAS  Google Scholar 

  • Kang N et al (2005) Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability. Nano Lett 5(2):315–319

    PubMed  CAS  Google Scholar 

  • Kataoka K et al (2000) Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64(1–3):143–153

    PubMed  CAS  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131

    PubMed  CAS  Google Scholar 

  • Kim MS et al (2006) pH-responsive PEG-poly(beta-amino ester) block copolymer micelles with a sharp transition. Macromol Rapid Commun 27(6):447–451

    CAS  Google Scholar 

  • Kim D, Lee ES, Oh KT, Gao ZG, Bae YH (2008) Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 4(11):2043–2050

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim S, Shi Y, Kim JY, Park K, Cheng JX (2010a) Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv 7(1):49–62

    PubMed  CAS  Google Scholar 

  • Kim W, Thevenot J, Ibarboure E, Lecommandoux S, Chaikof EL (2010b) Self-assembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles. Angew Chem Int Ed Engl 49(25):4257–4260

    PubMed  CAS  Google Scholar 

  • Kobayashi T et al (2007) Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm 329(1–2):94–102

    PubMed  CAS  Google Scholar 

  • Koivunen E, Wang B, Ruoslahti E (1994) Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol 124(3):373–380

    PubMed  CAS  Google Scholar 

  • Kubo T et al (2001) Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters. Int J Oncol 18(1):121–125

    PubMed  CAS  Google Scholar 

  • Kwon GS, Okano T (1999) Soluble self-assembled block copolymers for drug delivery. Pharm Res 16(5):597–600

    PubMed  CAS  Google Scholar 

  • Leamon CP, Cooper SR, Hardee GE (2003) Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug Chem 14(4):738–747

    PubMed  CAS  Google Scholar 

  • Lee RJ, Huang L (1996) Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 271(14):8481–8487

    PubMed  CAS  Google Scholar 

  • Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1233(2):134–144

    PubMed  Google Scholar 

  • Lee ES, Oh KT, Kim D, Youn YS, Bae YH (2007a) Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-b-poly (ethylene glycol)-b-poly(l-histidine). J Control Release 123(1):19–26

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee GY, Park K, Kim SY, Byun Y (2007b) MMPs-specific PEGylated peptide-DOX conjugate micelles that can contain free doxorubicin. Eur J Pharm Biopharm 67(3):646–654

    PubMed  CAS  Google Scholar 

  • Li SD, Chono S, Huang L (2008) Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther 16(5):942–946

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li J, Yang Y, Huang L (2012) Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J Control Release 158(1):108–114

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y et al (2013) Potent retro-inverso d-peptide for simultaneous targeting of angiogenic blood vasculature and tumor cells. Bioconjug Chem 24(1):133–143

    PubMed  Google Scholar 

  • Lindner LH et al (2004) Novel temperature-sensitive liposomes with prolonged circulation time. Clin Cancer Res 10(6):2168–2178

    PubMed  CAS  Google Scholar 

  • Loughrey H, Bally MB, Cullis PR (1987) A non-covalent method of attaching antibodies to liposomes. Biochim Biophys Acta 901(1):157–160

    PubMed  CAS  Google Scholar 

  • Lynn DM, Amiji MM, Langer R (2001) pH-responsive polymer microspheres: rapid release of encapsulated material within the range of intracellular pH financial support was provided by the NSF (Cooperative Agreement No. ECC9843342 to the MIT Biotechnology Process Engineering Center), the NIH (GM26698), and the Department of the Army (Cooperative Agreement DAMD 17-99-2-9-001 to the Center for Innovative Minimally Invasive Therapy). D.M.L. wishes to thank the NIH for a Postdoctoral Fellowship (NRSA Fellowship No. 1 F32 GM20227-01). Scanning electron microscopy and confocal microscopy images were acquired by William Fowle at the Northeastern University Center for Electron Microscopy. Dr. David Putnam, David Ting, and Tommy Thomas are thanked for helpful discussions. Angew Chem Int Ed Engl 40(9):1707–1710

    PubMed  CAS  Google Scholar 

  • Macholl S et al (2012) In vivo pH imaging with (99m)Tc-pHLIP. Mol Imaging Biol 14(6):725–734

    PubMed  PubMed Central  Google Scholar 

  • Mayhew E, Lazo R, Vail WJ, King J, Green AM (1984) Characterization of liposomes prepared using a microemulsifier. Biochim Biophys Acta 775(2):169–174

    PubMed  CAS  Google Scholar 

  • Meyer DE, Kong GA, Dewhirst MW, Zalutsky MR, Chilkoti A (2001) Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res 61(4):1548–1554

    PubMed  CAS  Google Scholar 

  • Mikhail AS, Allen C (2009) Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 138(3):214–223

    PubMed  CAS  Google Scholar 

  • Milsmann MH, Schwendener RA, Weder HG (1978) The preparation of large single bilayer liposomes by a fast and controlled dialysis. Biochim Biophys Acta 512(1):147–155

    PubMed  CAS  Google Scholar 

  • Min KH et al (2010) Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 144(2):259–266

    PubMed  CAS  Google Scholar 

  • Naito M et al (2012) A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew Chem Int Ed Engl 51(43):10751–10755

    PubMed  CAS  Google Scholar 

  • Nasongkla N et al (2004) cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl 43(46):6323–6327

    PubMed  CAS  Google Scholar 

  • Neradovic D, Soga O, Van Nostrum CF, Hennink WE (2004) The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups. Biomaterials 25(12):2409–2418

    PubMed  CAS  Google Scholar 

  • Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42(3):1147–1235

    PubMed  CAS  Google Scholar 

  • O’Brien ME et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449

    PubMed  Google Scholar 

  • O’Reilly RK, Hawker CJ, Wooley KL (2006) Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev 35(11):1068–1083

    PubMed  Google Scholar 

  • Oberoi HS, Laquer FC, Marky LA, Kabanov AV, Bronich TK (2011) Core cross-linked block ionomer micelles as pH-responsive carriers for cis-diamminedichloroplatinum(II). J Control Release 153(1):64–72

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oishi M, Nagasaki Y, Itaka K, Nishiyama N, Kataoka K (2005) Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc 127(6):1624–1625

    PubMed  CAS  Google Scholar 

  • Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 557(1):9–23

    PubMed  CAS  Google Scholar 

  • Park EK, Kim SY, Lee SB, Lee YM (2005) Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release 109(1–3):158–168

    PubMed  CAS  Google Scholar 

  • Parrish B, Breitenkamp RB, Emrick T (2005) PEG- and peptide-grafted aliphatic polyesters by click chemistry. J Am Chem Soc 127(20):7404–7410

    PubMed  CAS  Google Scholar 

  • Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    PubMed  CAS  Google Scholar 

  • Potineni A, Lynn DM, Langer R, Amiji MM (2003) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J Control Release 86(2–3):223–234

    PubMed  CAS  Google Scholar 

  • Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32(8–9):962–990

    CAS  Google Scholar 

  • Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99(14):1095–1106

    PubMed  CAS  Google Scholar 

  • Sawant RM et al (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17(4):943–949

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schurtenberger P, Mazer N, Waldvogel S, Kanzig W (1984) Preparation of monodisperse vesicles with variable size by dilution of mixed micellar solutions of bile salt and phosphatidylcholine. Biochim Biophys Acta 775(1):111–114

    PubMed  CAS  Google Scholar 

  • Shan L (2004) Cy5.5-labeled pH low insertion peptide (pHLIP). Molecular Imaging and Contrast Agent Database (MICAD), Bethesda (MD)

    Google Scholar 

  • Shum P, Kim JM, Thompson DH (2001) Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev 53(3):273–284

    PubMed  CAS  Google Scholar 

  • Siehler S, Zupanc GK, Seuwen K, Hoyer D (1999) Characterisation of the fish sst3 receptor, a member of the SRIF1 receptor family: atypical pharmacological features. Neuropharmacology 38(3):449–462

    PubMed  CAS  Google Scholar 

  • Sofou S (2007) Surface-active liposomes for targeted cancer therapy. Nanomedicine (Lond) 2(5):711–724

    CAS  Google Scholar 

  • Soundararajan S, Chen WW, Spicer EK, Courtenay-Luck N, Fernandes DJ (2008) The nucleolin targeting aptamer AS1411 destabilizes bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68(7):2358–2365

    PubMed  CAS  Google Scholar 

  • Stetler-Stevenson WG, Yu AE (2001) Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol 11(2):143–152

    PubMed  CAS  Google Scholar 

  • Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8(6):473–480

    PubMed  CAS  Google Scholar 

  • Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41(2):147–162

    PubMed  CAS  Google Scholar 

  • Sugahara KN et al (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16(6):510–520

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sugahara KN et al (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981):1031–1035

    PubMed  CAS  PubMed Central  Google Scholar 

  • Szoka F Jr, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A 75(9):4194–4198

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tacker JR, Anderson RU (1982) Delivery of antitumor drug to bladder cancer by use of phase transition liposomes and hyperthermia. J Urol 127(6):1211–1214

    PubMed  CAS  Google Scholar 

  • Tagami T, Ernsting MJ, Li SD (2011) Optimization of a novel and improved thermosensitive liposome formulated with DPPC and a Brij surfactant using a robust in vitro system. J Control Release 154(3):290–297

    PubMed  CAS  Google Scholar 

  • Tang J et al (2013) Synergistic targeted delivery of payload into tumor cells by dual-ligand liposomes co-modified with cholesterol anchored transferrin and TAT. Int J Pharm 454(1):31–40

    PubMed  CAS  Google Scholar 

  • Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49(16):4373–4384

    PubMed  CAS  Google Scholar 

  • Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M (2006) Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release 111(3):333–342

    PubMed  CAS  Google Scholar 

  • Thevenin D, An M, Engelman DM (2009) pHLIP-mediated translocation of membrane-impermeable molecules into cells. Chem Biol 16(7):754–762

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson DH, Gerasimov OV, Wheeler JJ, Rui YJ, Anderson VC (1996) Triggerable plasmalogen liposomes: improvement of system efficiency. Biochim Biophys Acta 1279(1):25–34

    PubMed  Google Scholar 

  • Tong R, Hemmati HD, Langer R, Kohane DS (2012) Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc 134(21):8848–8855

    PubMed  CAS  PubMed Central  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    PubMed  CAS  Google Scholar 

  • Vavere AL et al (2009) A novel technology for the imaging of acidic prostate tumors by positron emission tomography. Cancer Res 69(10):4510–4516

    PubMed  CAS  Google Scholar 

  • Vijayalakshmi P, Srivastava KK, Poornima B, Nirmalan P (2003) Visual outcome of cataract surgery in children with congenital rubella syndrome. J AAPOS 7(2):91–95

    PubMed  Google Scholar 

  • Vilner BJ, John CS, Bowen WD (1995) Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res 55(2):408–413

    PubMed  CAS  Google Scholar 

  • Walker JM et al (1990) Sigma receptors: biology and function. Pharmacol Rev 42(4):355–402

    PubMed  CAS  Google Scholar 

  • Wang M, Lowik DWPM, Miller AD, Thanou M (2009) Targeting the urokinase plasminogen activator receptor with synthetic self-assembly nanoparticles. Bioconjug Chem 20(1):32–40

    PubMed  CAS  Google Scholar 

  • Wang YG et al (2011) Materializing sequential killing of tumor vasculature and tumor cells via targeted polymeric micelle system. J Control Release 149(3):299–306

    PubMed  CAS  Google Scholar 

  • Warenius HM, Galfre G, Bleehen NM, Milstein C (1981) Attempted targeting of a monoclonal antibody in a human tumour xenograft system. Eur J Cancer Clin Oncol 17(9):1009–1015

    PubMed  CAS  Google Scholar 

  • Weinstein JN, Magin RL, Yatvin MB, Zaharko DS (1979) Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science 204(4389):188–191

    PubMed  CAS  Google Scholar 

  • Wu YR, Sefah K, Liu HP, Wang RW, Tan WH (2010) DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci U S A 107(1):5–10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xiong XB et al (2005) Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic. J Control Release 107(2):262–275

    PubMed  CAS  Google Scholar 

  • Yan ZQ et al (2011) LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics. Nanotechnology 22(41)

    Google Scholar 

  • Yan ZQ et al (2012a) LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J Control Release 157(1):118–125

    PubMed  CAS  Google Scholar 

  • Yan HH et al (2012b) Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano 6(1):410–420

    PubMed  CAS  Google Scholar 

  • Yang T et al (2007) Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Control Release 120(3):169–177

    PubMed  CAS  Google Scholar 

  • Yao L, Daniels J, Wijesinghe D, Andreev OA, Reshetnyak YK (2013a) pHLIP (R)-mediated delivery of PEGylated liposomes to cancer cells. J Control Release 167(3):228–237

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yao L et al (2013b) pHLIP peptide targets nanogold particles to tumors. Proc Natl Acad Sci U S A 110(2):465–470

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yokoyama M et al (1998) Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release 55(2–3):219–229

    PubMed  CAS  Google Scholar 

  • Yoo HS, Park TG (2004) Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 96(2):273–283

    PubMed  CAS  Google Scholar 

  • Zhan C et al (2010a) Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release 143(1):136–142

    PubMed  CAS  Google Scholar 

  • Zhan C, Yan Z, Xie C, Lu W (2010b) Loop 2 of Ophiophagus hannah toxin b binds with neuronal nicotinic acetylcholine receptors and enhances intracranial drug delivery. Mol Pharm 7(6): 1940–1947

    PubMed  CAS  Google Scholar 

  • Zhan C et al (2011) Micelle-based brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angew Chem Int Ed Engl 50(24):5482–5485

    PubMed  CAS  Google Scholar 

  • Zhan C et al (2012a) Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo. J Control Release 160(3):630–636

    PubMed  CAS  Google Scholar 

  • Zhan CY et al (2012b) Cyclic RGD-polyethylene glycol-polyethylenimine for intracranial glioblastoma-targeted gene delivery. Chem Asian J 7(1):91–96

    PubMed  CAS  Google Scholar 

  • Zhang L et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769

    PubMed  CAS  Google Scholar 

  • Zhao HZ, Yung LYL (2008) Selectivity of folate conjugated polymer micelles against different tumor cells. Int J Pharm 349(1–2):256–268

    PubMed  CAS  Google Scholar 

  • Zhao Z et al (2013) A controlled-release nanocarrier with extracellular pH value driven tumor targeting and translocation for drug delivery. Angew Chem Int Ed Engl 52(29):7487–7491

    PubMed  CAS  Google Scholar 

  • Zhu S et al (2011a) RGD-modified PEG-PAMAM-DOX conjugate: in vitro and in vivo targeting to both tumor neovascular endothelial cells and tumor cells. Adv Mater 23(12):H84–H89

    PubMed  CAS  Google Scholar 

  • Zhu ZS et al (2011b) The effect of hydrophilic chain length and iRGD on drug delivery from poly(epsilon-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 32(35): 9525–9535

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyue Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Lu, W., Zhan, C., Hou, H. (2014). Targeted Liposomes and Micelles as Carriers for Cancer Therapy. In: Alonso, M., Garcia-Fuentes, M. (eds) Nano-Oncologicals. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-08084-0_4

Download citation

Publish with us

Policies and ethics