Skip to main content

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 7))

Abstract

In this study we have explored the two EEG phenomena that accompany movement preparation and execution: movement related cortical potentials (MRCP) and event-related desynchronization/synchronization (ERD/ERS). The experiments comprised the two conditions for motor task initiation, self paced and cued. The aim of the study was to explore how the introduction of the cue influences the morphological features of the MRCP and ERD/ERS curves. Preliminary results of the tests in 9 healthy subjects showed statistically significant differences in MRCP components for the two conditions and no significant differences in ERD/ERS morphology. Brain-Computer Interface algorithms for online control of assistive devices for restoration of movement may benefit from these results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daly, J.J., Wolpaw, J.R.: Brain-computer interfaces in neurological rehabilitation. The Lancet Neurology 7(11), 1032–1043 (2008)

    Article  Google Scholar 

  2. Ang, K.K., Guan, C.: Brain-computer interface in stroke rehabilitation. Journal of Computing Science and Engineering 7(2), 139–146 (2013)

    Article  Google Scholar 

  3. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clinical Neurophysiology 113(6), 767–791 (2002)

    Article  Google Scholar 

  4. Caria, A., Weber, C., Brötz, D., Ramos, A., Ticini, L.F., Gharabaghi, A., Braun, C., Birbaumer, N.: Chronic stroke recovery after combined BCI training and physiotherapy: a case report. Psychophysiology 48(4), 578–582 (2011)

    Article  Google Scholar 

  5. Mrachacz-Kersting, N., Kristensen, S.R., Niazi, I.K., Farina, D.: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. The Journal of Physiology 590(7), 1669–1682 (2012)

    Google Scholar 

  6. Toro, C., Deuschl, G., Thatcher, R., Sato, S., Kufta, C., Hallett, M.: Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG. Electroenceph. Clin. Neurophysiol. 93, 380–389 (1994)

    Article  Google Scholar 

  7. Pfurtscheller, G., Müller-Putz, G.R., Pfurtscheller, J., Rupp, R.: EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. EURASIP Journal on Applied Signal Processing, 3152–3155 (2005)

    Google Scholar 

  8. Leeb, R., Friedman, D., Muller-Putz, G.R., Scherer, R., Slater, M., Pfurtscheller, G.: Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Computational Intelligence and Neuroscience 2007, Article ID 79642, 8 (2007)

    Google Scholar 

  9. Neuper, C., Wörtz, M., Pfurtscheller, G.: ERD/ERS patterns reflecting sensorimotor activation and deactivation. Progress in Brain Research 159, 211–222 (2005)

    Article  Google Scholar 

  10. Bai, O., Rathi, V., Lin, P., Huang, D., Battapady, H., Fei, D.-Y., Schneider, L., Houdayer, E., Chen, X., Hallett, M.: Prediction of human voluntary movement before it occurs. Clinical Neurophysiology 122(2), 364–372 (2011)

    Article  Google Scholar 

  11. Deecke, L., Grozinger, B., Kornhuber, H.H.: Voluntary finger movements in man: cerebral potentials and theory. Biol. Cybern. 23, 99–119 (1976)

    Article  Google Scholar 

  12. Niazi, I.K., Jiang, N., Tiberghien, O., Feldbæk-Nielsen, J., Dremstrup, K., Farina, D.: Detection of movement intention from single-trial movement-related cortical potentials. Journal of Neural Engineering 8(6), 66009 (2011)

    Article  Google Scholar 

  13. Xu, R., Jiang, N., Lin, C., Mrachacz-Kersting, N., Dremstrup, K., Farina, D.: Enhanced Low-latency Detection of Motor Intention from EEG for Closed-loop Brain-Computer Interface Applications. IEEE Transactions on Biomedical Engineering 61(2), 288–296 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Savić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Savić, A. et al. (2014). Movement Related Cortical Potentials and Sensory Motor Rhythms during Self Initiated and Cued Movements. In: Jensen, W., Andersen, O., Akay, M. (eds) Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation. Biosystems & Biorobotics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-08072-7_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08072-7_98

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08071-0

  • Online ISBN: 978-3-319-08072-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics