Skip to main content

High Temperature and Density in Lattice QCD

  • Chapter
  • First Online:
Lattice QCD for Nuclear Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 889))

Abstract

These lectures provide an introduction to lattice gauge theory calculations of the properties of strongly interacting matter at high temperatures and densities. Such an environment is produced in heavy ion collisions and was most likely present in the early universe. Emphasis is placed, not on formalism, rather on an intuitive understanding of the nature of the crossover from the confined, chiral-symmetry-broken phase to the deconfined, chiral-symmetry-restored phase. Illustrations are taken from results of recent numerical simulations. Connections with phenomenology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the fermion field has been rescaled by a factor \(\sqrt{2\kappa }\) relative to the notation of chapter “Lattice QCD: A Brief Introduction”. This normalization is convenient for numerical implementations.

  2. 2.

    Recent proceedings of the Lattice conference series are published by SISSA: http://pos.sissa.it/ and can be found under the search term “Lattice Field Theory.”

References

  1. T. Banks, A. Casher, Nucl. Phys. B169, 103 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. L.G. Yaffe, B. Svetitsky, Phys. Rev. D26, 963 (1982)

    ADS  Google Scholar 

  3. T.A. DeGrand, C.E. DeTar, Nucl. Phys. B225, 590 (1983)

    Article  ADS  Google Scholar 

  4. WHOT-QCD Collaboration, S. Ejiri et al., Central Eur. J. Phys. 10, 1322 (2012). arXiv:1203.3793

    Google Scholar 

  5. A. Patel, Nucl. Phys. B243, 411 (1984)

    Article  ADS  Google Scholar 

  6. A. Patel, Phys. Lett. B139, 394 (1984)

    Article  ADS  Google Scholar 

  7. F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B605, 579 (2001). arXiv:hep-lat/0012023

    Google Scholar 

  8. A. Bazavov et al., Phys. Rev. D80, 014504 (2009). arXiv:0903.4379

    Google Scholar 

  9. A. Jakovac, P. Petreczky, K. Petrov, A. Velytsky, Phys. Rev. D75, 014506 (2007). arXiv:hep-lat/0611017

    Google Scholar 

  10. M. Asakawa, T. Hatsuda, Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001). arXiv:hep-lat/0011040

    Google Scholar 

  11. F. Karsch, E. Laermann, P. Petreczky, S. Stickan, I. Wetzorke, Phys. Lett. B530, 147 (2002). arXiv:hep-lat/0110208

    Google Scholar 

  12. H.B. Meyer, Phys. Rev. Lett. 100, 162001 (2008). arXiv:0710.3717

    Google Scholar 

  13. R.D. Pisarski, F. Wilczek, Phys. Rev. D29, 338 (1984)

    ADS  Google Scholar 

  14. E. Laermann, O. Philipsen, Ann. Rev. Nucl. Part. Sci. 53, 163 (2003). arXiv:hep-ph/0303042

    Google Scholar 

  15. A. Bazavov et al., Phys. Rev. D85, 054503 (2012). arXiv:1111.1710

    Google Scholar 

  16. H. Ohno, U. Heller, F. Karsch, S. Mukherjee, PoS LATTICE2011, 210 (2011). arXiv:1111.1939

    Google Scholar 

  17. H. Ohno, U. Heller, F. Karsch, S. Mukherjee, PoS LATTICE2012, 095 (2012). arXiv:1211.2591

    Google Scholar 

  18. HotQCD Collaboration, A. Bazavov et al., Phys. Rev. D86, 094503 (2012). arXiv:1205.3535

    Google Scholar 

  19. C. DeTar et al., Phys. Rev. D81, 114504 (2010). arXiv:1003.5682

    Google Scholar 

  20. C. Bernard et al., Phys. Rev. D77, 014503 (2008). arXiv:0710.1330

    Google Scholar 

  21. HotQCD Collaboration, A. Bazavov et al., Phys. Rev. D86, 034509 (2012). arXiv:1203.0784

    Google Scholar 

Download references

Acknowledgements

I thank the organizers of the summer school for their hospitality and excellent organization. I am grateful to Ludmila Levkova for critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carleton DeTar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

DeTar, C. (2015). High Temperature and Density in Lattice QCD. In: Lin, HW., Meyer, H. (eds) Lattice QCD for Nuclear Physics. Lecture Notes in Physics, vol 889. Springer, Cham. https://doi.org/10.1007/978-3-319-08022-2_6

Download citation

Publish with us

Policies and ethics