Skip to main content

Ran in Nucleocytoplasmic Transport

  • Chapter
  • First Online:
Ras Superfamily Small G Proteins: Biology and Mechanisms 2
  • 906 Accesses

Abstract

The Ran GTPase is a crucial component of all nucleocytoplasmic transport pathways except those that mediate the nuclear export of mRNAs and ribosome subunits. The nucleotide state of Ran provides a means by which the cytoplasmic and nucleoplasmic compartments are recognized as a consequence of RCC1, the Ran guanine nucleotide exchange factor (RanGEF), being located in the nucleus, whereas the Ran GTPase activating protein, RanGAP, is located in the cytoplasm. This spatial arrangement of RanGEF and RanGAP results in nuclear Ran being primarily in the GTP-bound state whereas cytoplasmic Ran is in the GDP bound state. This distribution of Ran nucleotide state in turn mediates the binding and release of cargo macromolecules in the donor and target compartments, respectively. Generally the nucleocytoplasmic transport of macromolecules is mediated by transport factors of the karyopherin-β family that change their conformation depending on whether RanGTP is bound or not, and this conformational change in turn mediates the affinity of the transport factors for their cargoes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadian MR, Stege P, Scheffzek K, Wittinghofer A (1997) Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol 4:686–689

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CF, Görlich D, Stewart M (1999) Interaction between NTF2 and xFxFG nucleoporins is required for the nuclear import of RanGDP. J Mol Biol 293:579–593

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Littlewood T, Stewart M (2000) Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102:99–108

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M (2002a) GLFG and FxFG nucleoporins bind to overlapping sites on importin-β. J Biol Chem 277:50597–50606

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Leung SW, Baker RP, Quimby BB, Corbett AH, Stewart M (2002b) Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J 21:2843–2853

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bischoff FR, Görlich D (1997) RanBP1 is crucial for the release of RanGTP from importin-β-related nuclear transport factors. FEBS Lett 419:249–254

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR, Ponstingl H (1991) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator, RCC1. Nature 354:80–82

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR, Krebber H, Smirnova E, Dong W, Ponstingl H (1995) Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J 14:705–715

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chaillan-Huntington C, Braslavsky CV, Kuhlmann J, Stewart M (2000) Dissecting the interactions between NTF2, RanGDP, and the nucleoporin XFXFG repeats. J Biol Chem 275:5874–5879

    Article  PubMed  CAS  Google Scholar 

  • Chook Y-M, Blobel G (1999) Structure of the nuclear transport complex karyopherin-β2-Ran x GppNHp. Nature 399:230–237

    Article  PubMed  CAS  Google Scholar 

  • Chook Y-M, Blobel G (2001) Karyopherins and nuclear import. Curr Opin Struct Biol 11:703–715

    Article  PubMed  CAS  Google Scholar 

  • Chook YM, Süel KE (2011) Nuclear import by karyopherin-βs: recognition and inhibition. Biochim Biophys Acta 1813:1593–1606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cingolani G, Petosa C, Weis K, Müller CW (1999) Structure of importin-β bound to the IBB domain of importin-α. Nature 399:221–229

    Article  PubMed  CAS  Google Scholar 

  • Clarkson WD, Corbett AH, Paschal BM, Kent HM, McCoy AJ, Gerace L, Silver PA, Stewart M (1997) Nuclear protein import is decreased by engineered mutants of nuclear transport factor 2 (NTF2) that do not bind GDP-Ran. J Mol Biol 272:16–30

    Article  Google Scholar 

  • Conti E, Müller CW, Stewart M (2006) Karyopherin flexibility in nucleocytoplasmic transport. Curr Opin Struct Biol 16:237–244

    Article  PubMed  CAS  Google Scholar 

  • Cook AG, Conti E (2010) Nuclear export complexes in the frame. Curr Opin Struct Biol 20:247–252

    Article  PubMed  CAS  Google Scholar 

  • Cook A, Fernandez E, Lindner D, Ebert J, Schlenstedt G, Conti E (2005) The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Mol Cell 18:355–367

    Article  PubMed  CAS  Google Scholar 

  • Cook AG, Fukuhara N, Jinek M, Conti E (2009) Structures of the tRNA export factor in the nuclear and cytosolic states. Nature 461:60–65

    Article  PubMed  CAS  Google Scholar 

  • Denning DP, Patel SS, Uversky V, Fink AL, Rexach M (2003) Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci USA 100:2450–2455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dong X, Biswas A, Süel KE, Jackson LK, Martinez R, Gu H, Chook YM (2009a) Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature 458:1136–1141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dong X, Biswas A, Chook YM (2009b) Structural basis for assembly and disassembly of the CRM1 nuclear export complex. Nat Struct Mol Biol 16:558–560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fox AM, Ciziene D, McLaughlin SH, Stewart M (2011) Electrostatic interactions involving the extreme C terminus of nuclear export factor CRM1 modulate its affinity for cargo. J Biol Chem 286:29325–29335

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frey S, Richter RP, Görlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314:815–817

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist D, Mykytka B, Rexach M (2002) Accelerating the rate of disassembly of karyopherin.cargo complexes. J Biol Chem 277:18161–18172

    Article  PubMed  CAS  Google Scholar 

  • Görlich D, Henklein P, Laskey RA, Hartmann EA (1996) 41 amino acid motif in importin-α confers binding to importin-β and hence transit into the nucleus. EMBO J 15:1810–1817

    PubMed  PubMed Central  Google Scholar 

  • Güttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Görlich D (2010) NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol 17:1367–1376

    Article  PubMed  Google Scholar 

  • Hillig RC, Renault L, Vetter IR, Drell T, Wittinghofer A, Becker J (1999) The crystal structure of rna1p: a new fold for a GTPase activating protein. Mol Cell 3:781–791

    Article  PubMed  CAS  Google Scholar 

  • Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16:6535–6547

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kehlenbach RH, Dickmanns A, Kehlenbach A, Guan T, Gerace L (1999) A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J Cell Biol 145:645–657

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kent HM, Moore MS, Quimby BB, Baker AM, McCoy AJ, Murphy GA, Corbett AH, Stewart M (1999) Engineered mutants in the switch II loop of Ran define the contribution made by key residues to the interaction with nuclear transport factor 2 (NTF2) and the role of this interaction in nuclear protein import. J Mol Biol 289:565–577

    Article  PubMed  CAS  Google Scholar 

  • Klebe C, Bischoff FR, Ponstingl H, Wittinghofer A (1995a) Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34:639–647

    Article  PubMed  CAS  Google Scholar 

  • Klebe C, Prinz H, Wittinghofer A, Goody RS (1995b) The kinetic mechanism of Ran-nucleotide exchange catalyzed by RCC1. Biochemistry 34:12543–12552

    Article  PubMed  CAS  Google Scholar 

  • Kobe B (1999) Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat Struct Biol 6:388–397

    Article  PubMed  CAS  Google Scholar 

  • Koyama M, Matsuura Y (2010) An allosteric mechanism to displace nuclear export cargo from CRM1 and RanGTP by RanBP1. EMBO J 29:2002–2013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Künzler M, Gerstberger T, Stutz F, Bischoff FR, Hurt E (2000) Yeast Ran-binding protein 1 (Yrb1) shuttles between the nucleus and cytoplasm and is exported from the nucleus via a CRM1 (XPO1)-dependent pathway. Mol Cell Biol 20:4295–4308

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutay U, Bischoff FR, Kostka S, Kraft R, Görlich D (1997) Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 90:1061–1071

    Article  PubMed  CAS  Google Scholar 

  • Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Görlich D (1998) Identification of a tRNA-specific nuclear export receptor. Mol Cell 1:359–369

    Article  PubMed  CAS  Google Scholar 

  • Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH (2007) Classical nuclear localization signals: definition, function, and interaction with importin-α. J Biol Chem 282:5101–5105

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Sekimoto T, Yamashita E, Nagoshi E, Nakagawa A, Imamoto N, Yoshimura M, Sakai H, Chong KT, Tsukihara T, Yoneda Y (2003) The structure of importin-β bound to SREBP-2: nuclear import of a transcription factor. Science 302:1571–1575

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Matsuura Y, Liu SM, Stewart M (2005) Structural basis for nuclear import complex dissociation by RanGTP. Nature 435:693–696

    Article  PubMed  CAS  Google Scholar 

  • Lee BJ, Cansizoglu AE, Suel KE, Louis TH, Zhang Z, Chook YM (2006) Rules for nuclear localization sequence recognition by karyopherinβ2. Cell 126:543–558

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lim RY, Huang NP, Koser J, Deng J, Lau KH, Schwarz-Herion K, Fahrenkrog B, Aebi U (2006) Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc Natl Acad Sci USA 103:9512–9517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu SM, Stewart M (2005) Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-β homologue, Kap95p. J Mol Biol 349:515–525

    Article  PubMed  CAS  Google Scholar 

  • Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  CAS  Google Scholar 

  • Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107

    Article  PubMed  CAS  Google Scholar 

  • Matsuura Y, Stewart M (2004) Structural basis for the assembly of a nuclear export complex. Nature 432:872–877

    Article  PubMed  CAS  Google Scholar 

  • Matsuura Y, Stewart M (2005) Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J 24:3681–3689

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matsuura Y, Lange A, Harreman MT, Corbett AH, Stewart M (2003) Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. EMBO J 22:5358–5369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135:1457–1470

    Article  PubMed  CAS  Google Scholar 

  • Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140:499–509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maxwell JC (1872) The theory of heat. Longmans, London

    Google Scholar 

  • Monecke T, Güttler T, Neumann P, Dickmanns A, Görlich D, Ficner R (2009) Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science 324:1087–1091

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Weis K, Kjems J (2002) The C-terminal extension of the small GTPase Ran is essential for defining the GDP-bound form. J Mol Biol 318:583–593

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo M, Okazaki H, Nishimoto T (1989) The RCC1 protein, a regulator of the onset of chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol 109:1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T (2009) A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326:1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Oki M, Nishimoto T (1998) Yrb1p interaction with the gsp1p C terminus blocks Mog1p stimulation of GTP release from Gsp1p. Proc Natl Acad Sci USA 95:15388–15393

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Partridge JR, Schwartz TU (2009) Crystallographic and biochemical analysis of the Ran-binding zinc finger domain. J Mol Biol 391:375–389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paschal BM, Gerace L (1995) Identification of NTF2, a cytosolic factor for nuclear import that interacts with nuclear pore complex protein p62. J Cell Biol 129:925–937

    Article  PubMed  CAS  Google Scholar 

  • Paschal BM, Fritze C, Guan T, Gerace L (1997) High levels of the GTPase Ran/TC4 relieve the requirement for nuclear protein transport factor 2. J Biol Chem 272:21534–21539

    Article  PubMed  CAS  Google Scholar 

  • Quimby BB, Leung SW, Bayliss R, Harreman MT, Thirumala G, Stewart M, Corbett AH (2001) Functional analysis of the hydrophobic patch on nuclear transport factor 2 involved in interactions with the nuclear pore in vivo. J Biol Chem 276:38820–38829

    Article  PubMed  CAS  Google Scholar 

  • Renault L, Nassar N, Vetter I, Becker J, Klebe C, Roth M, Wittinghofer A (1998) The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392:97–101

    Article  PubMed  CAS  Google Scholar 

  • Renault L, Kuhlmann J, Henkel A, Wittinghofer A (2001) Structural basis for guanine nucleotide exchange on ran by the regulator of chromosome condensation (RCC1). Cell 105:245–255

    Article  PubMed  CAS  Google Scholar 

  • Ribbeck K, Görlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20:1320–1330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ribbeck K, Lipowsky G, Kent HM, Stewart M, Görlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17:6587–6598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saito N, Matsuura Y (2013) A 2.1-Å-resolution crystal structure of unliganded CRM1 reveals the mechanism of autoinhibition. J Mol Biol 425:350–364

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Klebe C, Fritz-Wolf K, Kabsch W, Wittinghofer A (1995) Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374:378–381

    Article  PubMed  CAS  Google Scholar 

  • Schrader N, Koerner C, Koessmeier K, Bangert JA, Wittinghofer A, Stoll R, Vetter IR (2008) The crystal structure of the Ran-Nup153ZnF2 complex: a general Ran docking site at the nuclear pore complex. Structure 16:1116–1125

    Article  PubMed  CAS  Google Scholar 

  • Seewald MJ, Korner C, Wittinghofer A, Vetter IR (2002) RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415:662–666

    Article  PubMed  CAS  Google Scholar 

  • Seewald MJ, Kraemer A, Farkasovsky M, Körner C, Wittinghofer A, Vetter IR (2003) Biochemical characterization of the Ran-RanBP1-RanGAP system: are RanBP proteins and the acidic tail of RanGAP required for the Ran-RanGAP GTPase reaction? Mol Cell Biol 23:8124–8136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith AE, Brownawell A, Macara IG (1998) Nuclear import of Ran is mediated by the transport factor NTF2. Curr Biol 8:1403–1406

    Article  PubMed  CAS  Google Scholar 

  • Stewart M (2003) Molecular recognition in nuclear trafficking. Science 302:1513–1514

    Article  PubMed  CAS  Google Scholar 

  • Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8:195–208

    Article  PubMed  CAS  Google Scholar 

  • Stewart M (2009) Nuclear export of small RNAs. Science 326:1195–1196

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Baker RP (2000) 1.9 Å resolution crystal structure of the Saccharomyces cerevisiae Ran-binding protein Mog1p. J Mol Biol 299:213–223

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Kent HM, McCoy AJ (1998a) Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase, Ran. J Mol Biol 277:635–646

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Kent HM, McCoy AJ (1998b) Structure of the Q69L mutant of GDP-Ran shows a major conformational change in the switch II region that accounts for its failure to bind nuclear transport factor 2 (NTF2). J Mol Biol 284:1517–1527

    Article  PubMed  CAS  Google Scholar 

  • Vetter IR, Arndt A, Kutay U, Görlich D, Wittinghofer A (1999a) Structural view of the Ran-importin β interaction at 2.3 Å resolution. Cell: 97:635–646

    Article  CAS  Google Scholar 

  • Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A (1999b) Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398:39–46

    Article  PubMed  CAS  Google Scholar 

  • Wong DH, Corbett AH, Kent HM, Stewart M, Silver PA (1997) Interaction between the small GTPase Ran/Gsp1p and Ntf2p is required for nuclear transport. Mol Cell Biol 17:3755–3767

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yaseen NR, Blobel G (1999) GTP hydrolysis links initiation and termination of nuclear import on the nucleoporin Nup358. J Biol Chem 274:26493–26502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Medical Research Council Grant U105178939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murray Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stewart, M. (2014). Ran in Nucleocytoplasmic Transport. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 2. Springer, Cham. https://doi.org/10.1007/978-3-319-07761-1_6

Download citation

Publish with us

Policies and ethics