Skip to main content

Crop–Livestock Interaction for Improved Productivity: Effect of Selected Varieties of Field Pea (Pisum sativum L.) on Grain and Straw Parameters

  • Conference paper
  • First Online:
Challenges and Opportunities for Agricultural Intensification of the Humid Highland Systems of Sub-Saharan Africa

Abstract

Straws from peas are richer in protein, calcium and magnesium than cereal straws, and if sustainably harvested, they are useful roughage feeds for ruminant animals. However, the available information on the nutritive and varietal effects on the dry matter (DM) yield of legume straws is scarce compared with that on cereal straws or grass hays despite the efforts to increase food production from peas. This study was therefore conducted with the objective of determining the chemical composition, digestibility and degradability of field pea (Pisum sativum L.) varieties. The study was conducted at Haramaya University Campus and Hirna Experimental Station, Ethiopia, during the 2011 cropping season. The experiment was established as a Randomized Complete Block Design (RCBD) with four replications. Five selected varieties were grown: Tegenech, G22763-2C, Markos, Adi and Local pea. Among the parameters determined were the leaf to stem ratio, straw DM yield, harvest index (HI), potential utility index (PUI), chemical composition, in vitro DM, in sacco DM, organic matter (OM) and neutral detergent fiber (NDF) degradability. The result showed varietal differences in grain yield, straw DM yield and straw quality. This indicated the possibility of selecting for varieties that combine high grain yield and desirable straw characteristics. According to the result of the experiment, Tegenech was identified as having a high yields in grain and straw DM. Local pea at Haramaya and Tegenech at Hirna were significantly (P < 0.05) higher in PUI than the remaining varieties. The value of PUI ranged from 29.2 to 41.7. The varieties were significantly different in the in vitro DM degradability at Haramaya whereas there was no significant difference at Hirna. At Haramaya, the variety G22763-2C had significantly higher in vitro DM degradability than Tegenech and Adi. There were also significant differences among the varieties for the plant cell wall. Except for the rate of degradability there was significant difference (P < 0.001) among the varieties for DM degradability both at Haramaya and Hirna, OM and NDF degradability at Haramaya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Association of Official Analytical Chemists (1990) Official methods of analysis, 5th edn. AOAC Inc., Arlington, 1298 p

    Google Scholar 

  • Bediye S (1995) Evaluation of nutritive of herbaceous legumes, browse species and oilseed cakes using chemical analysis, in vitro digestibility and nylon bag technique. An M.Sc. thesis presented to the School of Graduate Studies of Alemaya University, p 209

    Google Scholar 

  • Bediye S, Sileshi Z (1989) The composition of Ethiopian feeds. IAR Research reports. IAR (Institute of Agricultural Research), Addis Ababa, Ethiopia, 34 p

    Google Scholar 

  • Bediye S, Sileshi Z (1998) Utilization of tef straw as livestock feed, research review. In: Proceedings of the 5th national conference of the Ethiopian Society of Animal Production, Institute of Agricultural Research, Addis Ababa, Ethiopia, 15–17 May 1997, pp 173–185

    Google Scholar 

  • Bediye S, Sileshi Z, Tesfaye M (1996) Tef (Eragrostis tef) straw quality as influenced by variety and locations. In: Proceedings of the 4th annual conference of the Ethiopian Society of Animal Production, Addis Ababa, Ethiopia, 18–19 Apr 1996, p 150

    Google Scholar 

  • Birhanu A (2004) The effect of seed rates and stage of harvesting on forage yield and quality of oats (Avena sativa L.) vetch (Vicia villosa R.) mixture. M.Sc. thesis presented to the School of Graduate Studies of Haramaya University, p 84

    Google Scholar 

  • Bruno-Soares AM, Abreu JMF, Guedes CVM, Dias-da-Silva AA (1999) Chemical composition, dry matter and neutral detergent fiber degradation kinetics in rumen of seven legume straws. Anim Feed Sci Technol 83:75–80

    Article  Google Scholar 

  • Butt MN, Donart GB, Southward MG, Pieper RD, Mohammad N (1993) Effect of defoliation on plant growth of Napier grass. Trop Sci 33:111–120

    Google Scholar 

  • Chapman SR (1982) Crop production principle and practices. Montana State University, Kamala Nagar, p 49

    Google Scholar 

  • Coxworth E, Kerning J, Knipfel J, Thorlacius O, Crowle L (1981) Review: crop residues and forages in Western Canada; potential for feed use either with or without chemical or physical processing. Agric Environ 6:245–256

    Article  Google Scholar 

  • Eshete G (2002) An assessment of feed resources, their management and impact on livestock productivity in the Ginchi watershed area. M.Sc. thesis presented to the School of Graduate Studies of Haramaya University, p 172

    Google Scholar 

  • FAO (Food and Agriculture Organization) (1999) FAO production yearbook, vol 52-1998. FAO, Rome, Italy, p 233

    Google Scholar 

  • Fekede F (2004) Evaluation of potential forage production qualities of selected oats (Avena sativa L.) genotypes. M.Sc. thesis presented to the School of Graduate Studies of Haramaya University, p 190

    Google Scholar 

  • Fleischer JE, Barnes AR, Awubila B (1989) Grain yield and nutritive value of crop residues from three varieties of maize (Zea mays L.) crop. In: Said AN, Dzowela BH (eds) Overcoming constraints to efficient utilization of agricultural by-products as animal feed. Proceeding of 4th annual workshop held at the Institute of Animal Research. Mankon Station, Bamenda, Cameroun. Africa Research Network for Agriculture byproducts (ARNAB), Addis Ababa, Ethiopia, 20–27 Oct 1987, pp 239–255

    Google Scholar 

  • Geberhiwot L, Mohamed J (1989) The potential of crop residues, particularly wheat straw, as livestock feed in Ethiopia. In: Said AN, Dzowela BH (eds) Overcoming constraints to the efficient utilization of agricultural by-products as animal feed. International Livestock Center for Africa, Addis Ababa, p 144

    Google Scholar 

  • HUA (Haramaya University of Agriculture) (1998) Proceedings of the 15th annual research and extension review meeting, Haramaya, Ethiopia, 2 April 1998, pp 24–30

    Google Scholar 

  • Igbasan FA, Guenter W (1996) The evaluation and enhancement of the nutritive value of yellow, green and brown seeded pea cultivars for un-pelleted diets given to broiler chickens. J Anim Feed Sci Technol 63(64):10

    Google Scholar 

  • Jones DI, Wilson AD (1987) Nutritive quality of forage. In: Hacker JB, Ternouth IH (eds) The nutritive of herbivores. Academic, Australia, pp 65–89

    Google Scholar 

  • Jutzi S, Haque I, Abate Tedla (1987) The production of animal feed in the Ethiopian highlands: potential and limitations. In: First national livestock improvement conference. IAR, Addis Ababa, Ethiopia, pp 141–142

    Google Scholar 

  • Kossila V (1984) Location and potential feed use. In: Sundstøl F, Owen E (eds) Straw and other fibrous by-products as feed. Developments in animal and veterinary sciences, vol 14. Elsevier Science Publishers B.V, Amsterdam, p 9

    Google Scholar 

  • McDonald I (1981) A revised model for the estimation of protein degradability in the rumen. J Agric Sci (Cambridge) 96:251–252

    Article  CAS  Google Scholar 

  • Meissner HH, Zacharias PJK, Reagain PJ (2000) Forage quality (Feed value). In: Tainton NM (ed) Pasture management in South Africa. University of Natal press, Pietermaritzburg, pp 66–68

    Google Scholar 

  • Melaku S (2001) Evaluation of selected multi-purpose trees as feed supplements in tef (Erogrostis tef) straw based feeding of Menz sheep. Ph.D. thesis, Humboldt University, Verlag Dr. Koster, Berlin, Germany, p 194

    Google Scholar 

  • MSTAT-C (1989) A micro-computer statistical program for experimental design, data management and data analysis. Crop and Soil Sciences, Agricultural Economics and Institute of International Agriculture, Michigan State University, USA

    Google Scholar 

  • Nsahlai IV, Umunna NN (1996) Comparison between reconstituted sheep faeces and rumen fluid inocula and between in vitro and in sacco digestibility methods as predictors of intake and in vivo digestibility. J Agric Sci 126(2):235–248

    Article  Google Scholar 

  • Onwueme IC, Sinha TD (1991) Field crop production in Tropical Africa. Technical Centre for Agriculture and Rural Cooperation, Wageningen, pp 297–301

    Google Scholar 

  • Reed JD, Kebede Y, Fussell LK (1988) Factors affecting the nutritive value of sorghum and millet crop residues. In: Reed LD, Capper BS, Neate PJH (eds) Plant breeding and the nutritive value of crop residues. Proceedings workshop held at ILCA, Addis Ababa, Ethiopia, ILCA, Addis Ababa, 7–10 December 1987, pp 233–251

    Google Scholar 

  • SAS (1998) SASS/ STAT version 7. Guide to personal computers, statistical analysis system institute Inc., NC, USA

    Google Scholar 

  • Shirley RZ (1986) Nitrogen and energy nutrition of ruminants. Academic, Orlando

    Google Scholar 

  • Singh GP, Oosting SJ (1992) A model for describing the energy value of straws. Indian Dairyman XLIV:322–327

    Google Scholar 

  • Tarawali SA, Tarawali G, Larbi A, Hanson J (1995) Methods for the evaluation of legumes, grasses and fodder trees for use as livestock feed. ILRI manual. International Livestock Research Institute, Nairobi, p 51

    Google Scholar 

  • Tilley JMA, Terry RA (1963) A two-stage technique for in vitro digestion of forage crops. J Br Grassland Soc 18:104

    Article  CAS  Google Scholar 

  • Tolera A, Berg T, Sundstol F (1999) The effect of variety on maize grain and crop residue yield and nutritive value of the stover. Anim Feed Sci Technol 79:165–177

    Article  Google Scholar 

  • Van Soest PJ (1982) Nutritional ecology of the ruminant. O and B Books, Corvallis, p 373

    Google Scholar 

  • Van Soest PJ, Robertson JB (1985) Analysis of forages and fibrous feeds. A laboratory manual for animal science 613. Cornell University, Ithaca, New York, USA

    Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods of dietary fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3592

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

First and foremost, we are greatly indebted to Haramaya University for sponsoring this work and to CIALCA for organizing the conference and publicizing the research findings. We would like to extend our heartfelt gratitude to Technical Centre for Agricultural and Rural Cooperation for covering the cost of conference participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Awet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yetimwork, G.G., Awet, E.G., Solomon, M. (2014). Crop–Livestock Interaction for Improved Productivity: Effect of Selected Varieties of Field Pea (Pisum sativum L.) on Grain and Straw Parameters. In: Vanlauwe, B., van Asten, P., Blomme, G. (eds) Challenges and Opportunities for Agricultural Intensification of the Humid Highland Systems of Sub-Saharan Africa. Springer, Cham. https://doi.org/10.1007/978-3-319-07662-1_12

Download citation

Publish with us

Policies and ethics