Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8494))

  • 1574 Accesses

Abstract

The reverse split rank of an integral polytope P is defined as the supremum of the split ranks of all rational polyhedra whose integer hull is P. Already in ℝ3 there exist polytopes with infinite reverse split rank. We give a geometric characterization of the integral polytopes in ℝn with infinite reverse split rank.

This work was supported by the Progetto di Eccellenza 2008–2009 of Fondazione Cassa di Risparmio di Padova e Rovigo. Yuri Faenza’s research was supported by the German Research Foundation (DFG) within the Priority Programme 1307 Algorithm Engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Averkov, G., Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y.: On the convergence of the affine hull of the Chvátal-Gomory closures. SIAM Journal on Discrete Mathematics 27, 1492–1502 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balas, E.: Disjunctive programming: Properties of the convex hull of feasible points. Discrete Applied Mathematics 89, 3–44 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barvinok, A.: A Course in Convexity, Grad. Stud. Math. 54, AMS, Providence, RI (2002)

    Google Scholar 

  4. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces. Mathematics of Operations Research 35, 704–720 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Basu, A., Cornuéjols, G., Margot, F.: Intersection cuts with infinite split rank. Mathematics of Operations Research 37, 21–40 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y., Grappe, R.: Reverse Chvátal–Gomory rank. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 133–144. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y., Grappe, R.: Reverse Chvátal–Gomory rank (submitted, 2014)

    Google Scholar 

  8. Cook, W., Coullard, C.R., Túran, G.: On the complexity of cutting-plane proofs. Discrete Applied Mathematics 18, 25–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cook, W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Mathematical Programming 174, 155–174 (1990)

    Article  MathSciNet  Google Scholar 

  10. Del Pia, A.: On the rank of disjunctive cuts. Mathematics of Operations Research 37, 372–378 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dey, S.S., Louveaux, Q.: Split rank of triangle and quadrilateral inequalities. Mathematics of Operations Research 36, 432–461 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eisenbrand, F., Schulz, A.S.: Bounds on the Chvátal rank of polytopes in the 0/1 cube. Combinatorica 23, 245–261 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kannan, R., Lovasz, L.: Covering minima and lattice-point-free convex bodies. Ann. Math., Second Series 128, 577–602 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Khintchine, A.: A quantitative formulation of Kronecker’s theory of approximation. Izv. Acad. Nauk SSSR, Ser. Mat. 12, 113–122 (1948) (in Russian)

    Google Scholar 

  15. Lovász, L.: Geometry of Numbers and Integer Programming. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developements and Applications, pp. 177–210. Kluwer (1989)

    Google Scholar 

  16. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience, New York (1988)

    MATH  Google Scholar 

  17. Pokutta, S., Stauffer, G.: Lower bounds for the Chvátal–Gomory rank in the 0/1 cube. Operations Research Letters 39, 200–203 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  19. Rothvoß, T., Sanitá, L.: 0/1 polytopes with quadratic chvátal rank. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 349–361. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Schrijver, A.: On cutting planes. Annals of Discrete Mathematics 9, 291–296 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y. (2014). Reverse Split Rank. In: Lee, J., Vygen, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2014. Lecture Notes in Computer Science, vol 8494. Springer, Cham. https://doi.org/10.1007/978-3-319-07557-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07557-0_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07556-3

  • Online ISBN: 978-3-319-07557-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics