Skip to main content

Mathematical Modeling of Afterglow Decay Curves

  • Chapter
  • First Online:
Design and Computation of Modern Engineering Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 54))

  • 2277 Accesses

Abstract

It is popular to use multiple single exponential equations to simulate an afterglow decay curve from experimental tests. This chapter shows methods to check generated models, including an examination of the definition for associated parameters used in equations, quotes of physical properties for experimental data, and views profiles of individual components. To solve multiple exponential equations, we transform non-linear equations into linear forms and propose a scheme to search for an appropriate solution. Examples cited from various resources are provided to demonstrate the validity of the five guide lines proposed in this chapter. Several unsolved problems in simulation are also indicated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao, Z., Wang, Y.: The synthesis and afterglow luminescence properties of a novel red afterglow phosphor: ZrO2: Sm3+, Sn 4+”. J. Lumin. 132, 2842–2846 (2012)

    Article  Google Scholar 

  2. Chang, C., Li, W., Huang, X., et al.: Photoluminescence and afterglow behavior of Eu 2+, Dy 3+ and Eu 3+, Dy 3+ in Sr3Al2O6 matrix. J. Lumin. 130, 347–350 (2010)

    Article  Google Scholar 

  3. Huang, P., Zhang, Q., Cui, C., Li, J.: Influence of excitation wavelengths on luminescent properties of Sr3Al2O6: Eu2+, Dy3+ Phosphors prepared by sol-gel-combustion processing. Opt. Mater. 33, 1252–1257 (2011)

    Article  Google Scholar 

  4. Sharma, S.K., Pitale, S.S., Malik, M.M., et al.: Spectral and defect analysis of Cu-doped combustion synthesized new SrAl4O7 phosphor. J. Lumin. 130, 240–248 (2010)

    Article  Google Scholar 

  5. Sharma, S.K., Pitale, S.S., Malik, M.M., et al.: Luminescence studies on the blue-green emitting Sr4Al14O25: Ce 3+phosphor synthesized through solution combustion route. J. Lumin. 129, 140–147 (2009)

    Article  Google Scholar 

  6. Yuan, S., Yang, Y., Fang, B., Chen, G.: Effects of doping ions on afterglow properties of Y2O2 S: Eu phosphors. Opt. Mater. 30, 535–538 (2007)

    Article  Google Scholar 

  7. Holmstrom, K., Petersson, J.: A review of the parameter estimation problem of fitting positive exponential sums to empirical data. Appl. Math. Comput. 126, 31–61 (2002)

    Article  MathSciNet  Google Scholar 

  8. Jukie, D., Scitovski, R.: Existence of optimal solution for exponential model by least squares. J. Comput. Appl. Math. 78, 317–328 (1997)

    Article  MathSciNet  Google Scholar 

  9. Chapman, S.J.: Fortran 95/2003 for Scientists and Engineers, 3rd edn. McGraw-Hill, New York (2007)

    Google Scholar 

  10. Kumar, V., Pitale, S.S., Mishra, V., et al.: Luminescence investigations of Ce3+ doped CaS nanophosphors. J. Alloy. Compd. 492, L8–L12 (2010)

    Article  Google Scholar 

  11. Yadav, P.J., Joshi, C.P., Moharil, S.V.: Persistent luminescence in Ca8Zn(Sio4)4Cl2:Eu2+”. J. Lumin. 1332, 2799–2801 (2012)

    Article  Google Scholar 

  12. Paulose, P.I., Joseph, J., Warrier, M.R., et al.: Relaxation kinetics of Sm: Ce-doped CaS phosphors. J. Lumin. 127, 583–588 (2007)

    Article  Google Scholar 

  13. Wu, H., Hu, Y., Kang, F., et al.: Observation on long afterglow of Tb3+ in CaWO4. Mater. Res. Bull. 46, 2489–2493 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this chapter consists of part of research projects sponsored by the National Science Council, Taiwan, R.O.C. as NSC101-2221-E-035-023, and NSC102-2221-E-035-049 whose support are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yang Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, YP., Tsai, CY., Huang, YC. (2014). Mathematical Modeling of Afterglow Decay Curves. In: Öchsner, A., Altenbach, H. (eds) Design and Computation of Modern Engineering Materials. Advanced Structured Materials, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-07383-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07383-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07382-8

  • Online ISBN: 978-3-319-07383-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics