Skip to main content

A Mortar Method Combined with an Augmented Lagrangian Approach for Treatment of Mechanical Contact Problems

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 35))

  • 2660 Accesses

Abstract

This work presents a mixed penalty-duality formulation from an augmented Lagrangian approach for treating the contact inequality constraints. The augmented Lagrangian approach allows to regularize the non differentiable contact terms and gives a C\(^1\) differentiable saddle-point functional. The relative displacement of two contacting bodies is described in the framework of the Finite Element Method (FEM) using the mortar method, which gives a smooth representation of the contact forces across the bodies interface. To study the robustness and performance of the proposed algorithm, validation numerical examples with finite deformations and large slip motion are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375

    Article  MATH  MathSciNet  Google Scholar 

  2. Areias PMA, César de Sá JMA, Conceiçao António CA (2004) Algorithms for the analysis of 3D finite strain contact problems. Int J Numer Methods Eng 61:1107–1151

    Article  MATH  Google Scholar 

  3. Armero F, Petocz E (1999) A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis. Comput Methods Appl Mech Eng 179:151–178

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernardi C, Maday Y, Patera A (1992) A new nonconforming approach to domain decomposition: the mortar element method. In: Brezia JLEH (ed) Nonlinear partial differential equations and their applications, Pitman and Wiley, pp 13–51

    Google Scholar 

  5. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    Book  MATH  Google Scholar 

  6. Cardona A, Klapka I, Geradin M (1994) Design of a new finite element programming environment. Eng Comput 11:365–381

    Article  MATH  Google Scholar 

  7. Cavalieri F, Cardona A (2012) An augmented Lagrangian method to solve 3D contact problems. Latin Am Appl Res 42(201):281–289

    Google Scholar 

  8. Cavalieri F, Cardona A (2013) An augmented Lagrangian technique combined with a mortar algorithm for modelling mechanical contact problems. Int J Numer Methods Eng 93(4):420–442

    Article  MathSciNet  Google Scholar 

  9. Cavalieri F, Fachinotti V, Cardona A (2012) A mortar contact algorithm for three-dimensional elasticity problems. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 28(2):80–92

    Google Scholar 

  10. Chen X, Hisada T (2006) Development of a finite element contact analysis algorithm to pass the patch test. Jpn Soc Mech Eng 49:483–491

    Google Scholar 

  11. Cichosz T, Bischoff M (2011) Consistent treatment of boundaries with mortar contact formulations using dual lagrange multipliers. Comput Methods Appl Mech Eng 200(9–12):1317–1332

    Article  MATH  MathSciNet  Google Scholar 

  12. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300

    MATH  Google Scholar 

  13. De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using nurbs-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20

    Article  MATH  MathSciNet  Google Scholar 

  14. Fischer K, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36(3):226–244

    Article  MATH  Google Scholar 

  15. Fischer K, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195:5020–5036

    Article  MATH  MathSciNet  Google Scholar 

  16. Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571

    MATH  MathSciNet  Google Scholar 

  17. Hammer M (2012) Frictional mortar contact for finite deformation problems with synthetic contact kinematics. Ph.D. thesis, Institut für Festigkeitslehre der Technischen Universitat Graz

    Google Scholar 

  18. Hartmann S, Ramm E (2008) A mortar based contact formulation for non-linear dynamics using dual lagrange multipliers. Finite Elem Anal Des 44:245–258

    Article  MathSciNet  Google Scholar 

  19. Hüeber S, Wohlmuth B (2005) A primal dual active set strategy for non-linear multibody contact problems. Comput Meth Appl Mech Eng 194(27–29):3147–3166

    Google Scholar 

  20. Hüeber S, Wohlmuth B (2009) Thermo-mechanical contact problems on non-matching meshes. Comput Methods Appl Mech Eng 198(15–16):1338–1350

    Google Scholar 

  21. Heegaard J, Curnier A (1993) An augmented Lagrangian method for discrete large slip contact problems. Int J Numer Methods Eng 36:569–593

    Article  MATH  MathSciNet  Google Scholar 

  22. Heintz P, Hansbo P (2006) Stabilized lagrange multiplier methods for bilateral elastic contact with friction. Comput Methods Appl Mech Eng 195(33–36):4323–4333

    Article  MATH  MathSciNet  Google Scholar 

  23. Hesch C, Betsch P (2010) Transient three-dimensional domain decomposition problems: frame-indifferent mortar constraints and conserving integration. Int J Numer Methods Eng 82(3):329–358

    MATH  MathSciNet  Google Scholar 

  24. Hesch C, Betsch P (2011) Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Comput Mech 48(4):461–475

    Article  MATH  MathSciNet  Google Scholar 

  25. Hüeber S, Mair M, Wohlmuth BI (2005) A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl Numer Math 54(3–4):555–576

    Article  MATH  MathSciNet  Google Scholar 

  26. Jones R, Papadopoulos P (2001) A novel three-dimensional contact finite element based on smooth pressure interpolations. Int J Numer Methods Eng 51(7):791–811

    Article  MATH  MathSciNet  Google Scholar 

  27. Kikuchi N, Oden J (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM 1988

    Google Scholar 

  28. Kim J, Youn S (2012) Isogeometric contact analysis using mortar method. Int J Numer Methods Eng 89(12):1559–1581

    Article  MATH  MathSciNet  Google Scholar 

  29. Laursen T (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  30. McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10):1525–1547

    Article  MATH  MathSciNet  Google Scholar 

  31. Oden J, Pire E (1984) Algorithms and numerical results for finite element approximation of contact problems with non-classical friction laws. Comput Struct 19:137–147

    Google Scholar 

  32. Papadopoulos P, Solberg J (1998) A Lagrange multiplier method for the finite element solution of frictionless contact problems. Math Comput Model 28(4–8):373–384

    Article  MATH  Google Scholar 

  33. Papadopoulos P, Taylor R (1990) A mixed formulation for the finite element solution of contact problems. Technical Report UCB/ SEMM Report 90/18, University of California, Berkeley

    Google Scholar 

  34. Popp A, Gee M, Wall WA (2009) A finite deformation mortar contact formulation using a primal dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391

    Article  MATH  MathSciNet  Google Scholar 

  35. Popp A, Gitterle M, Gee MW, Wall W (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465

    Google Scholar 

  36. Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80

    Article  MATH  MathSciNet  Google Scholar 

  37. Puso M (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59:315–336

    Article  MATH  Google Scholar 

  38. Puso M, Laursen T (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629

    Article  MATH  MathSciNet  Google Scholar 

  39. Puso M, Laursen T (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193:4891–4913

    Article  MATH  MathSciNet  Google Scholar 

  40. Solberg J, Jones R, Papadopoulos P (2007) A family of simple two-pass dual formulations for the finite element solution of contact problems. Comput Methods Appl Mech Eng 196 (4–6):782–802

    Article  MATH  MathSciNet  Google Scholar 

  41. Solberg J, Papadopoulos P (2005) An analysis of dual formulations for the finite element solution of two-body contact problems. Comput Methods Appl Mech Eng 194(25–26):2734–2780

    Article  MATH  MathSciNet  Google Scholar 

  42. Temizer A (2012) A mixed formulation of mortar-based frictionless contact. Comput Methods Appl Mech Eng 223–224:173–185

    Article  MathSciNet  Google Scholar 

  43. Temizer A (2013) A mixed formulation of mortar-based contact with friction. Comput Methods Appl Mech Eng 255:183–195

    Article  MathSciNet  Google Scholar 

  44. Temizer A, Wriggers P, Hughes J (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128

    Article  MathSciNet  Google Scholar 

  45. Wohlmuth B (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38:989–1012

    Article  MATH  MathSciNet  Google Scholar 

  46. Wriggers P (2002) Computational contact mechanics. Wiley, New York

    Google Scholar 

  47. Yang B, Laursen T, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62:1183–1225

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has received financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Universidad Nacional del Litoral (CAI+D 2009 PI65-330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cardona .

Editor information

Editors and Affiliations

Appendix

Appendix

The linearization of the tangential vector \({{\varvec{t}}}_A\) is presented. The tangential vector \({{\varvec{t}}}_A\) is used in the slip status, thus

$$\begin{aligned} {{\varvec{t}}}_A= \frac{\varvec{\sigma }_{TA}}{\parallel \varvec{\sigma }_{TA}\parallel } = \frac{\varvec{\sigma }_{TA}}{-\mu \sigma _{NA}}. \end{aligned}$$
(4.43)

The linearization operator \(\varDelta \) applied to Eq. (4.43), yields

$$\begin{aligned} \varDelta {{\varvec{t}}}_A = \frac{[{{\varvec{I}}}-{{\varvec{t}}}_A\otimes {{\varvec{t}}}_A]\varDelta \varvec{\sigma }_{A}}{\parallel \varvec{\sigma }_{TA}\parallel } = \frac{[{{\varvec{I}}}-{{\varvec{t}}}_A\otimes {{\varvec{t}}}_A]\varDelta \varvec{\sigma }_{A}}{-\mu \sigma _{NA}}. \end{aligned}$$
(4.44)

After some algebraic manipulations the linearization of the tangential vector is written as

$$\begin{aligned} \varDelta {{\varvec{t}}}_A = -\frac{{{\varvec{I}}}-{{\varvec{t}}}_A\otimes {{\varvec{t}}}_A - \varvec{\nu }_A\otimes \varvec{\nu }_A}{\mu \sigma _{NA}}\varDelta \varvec{\sigma }_A + \frac{\varvec{\nu }_A\otimes \varvec{\sigma }_A + ({{\varvec{I}}}- {{\varvec{t}}}_A\otimes {{\varvec{t}}}_A) \sigma _{NA} }{\mu \sigma _{NA}}\varDelta \varvec{\nu }_A. \end{aligned}$$
(4.45)

If the variation of the normal vector \(\varvec{\nu }_A\) is neglected, the final expression is given by

$$\begin{aligned} \varDelta {{\varvec{t}}}_A = -\frac{{{\varvec{I}}}-{{\varvec{t}}}_A\otimes {{\varvec{t}}}_A - \varvec{\nu }_A\otimes \varvec{\nu }_A}{\mu \sigma _{NA}}\varDelta \varvec{\sigma }_A. \end{aligned}$$
(4.46)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cavalieri, F.J., Brüls, O., Cardona, A. (2014). A Mortar Method Combined with an Augmented Lagrangian Approach for Treatment of Mechanical Contact Problems. In: Terze, Z. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-319-07260-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07260-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07259-3

  • Online ISBN: 978-3-319-07260-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics