Skip to main content

Comparison and Field Test Validation of Various Multibody Codes for Wind Turbine Modelling

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 35))

Abstract

The decrease of fossil energy sources leads to an increased use of renewable energy sources like wind energy. The design of the mechanical components of a wind turbine is considerably governed by their fatigue behaviour over the product life cycle. Therefore, reliable estimations of the interface loads on the components, by means of appropriate multibody models, are necessary. While simplified wind turbine design codes, such as Flex5 or GH Bladed, have been mainly used for previous wind turbine developments, general purpose multibody simulation environments like MSC.Adams, SIMPACK, or alaska/Wind in combination with specific aerodynamic simulation packages are now applied. Here, the components of a wind turbine, such as the drive train with gear pair contacts, a flexible main frame, or a lattice tower, can be modelled in much more detail and specific manner compared to previous simulation models. For example, the geometric nonlinear behaviour of the blades can be taken into account which is essential for the simulation of long slim blade designs. In the present contribution, different multibody packages for wind turbine modelling are compared on the basis of simulation models of an existing wind turbine. Beside of the special wind turbine design code Flex5, developed at the Technical University of Denmark Copenhagen (DTU), the commercial multibody simulation packages MSC.Adams and SIMPACK are used. For the validation of the simulations, extensive measurements on a wind turbine prototype have been evaluated comprising measurement data over a period of more than 1.5 years. To compare measurements and simulations, statistical and dynamical evaluations of the results have been done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauchau OA (2010) Flexible multibody dynamics. Springer, New York

    Google Scholar 

  2. Betz A (1926) Wind-Energie und ihre Ausnutzung durch Windmühlen. Aerodynamische Versuchsanstalt, Göttingen

    Google Scholar 

  3. Bossanyi EA (2000) The design of closed loop controllers for wind turbines. Wind Energy 3:149–163

    Article  Google Scholar 

  4. Bossanyi EA (2003) Individual blade pitch control for load reduction. Wind Energy 6:119–128

    Article  Google Scholar 

  5. Bossanyi EA, Fleming PA, Wright AD (2013) Validation of individual pitch control by field tests on two- and three-bladed wind turbines. IEEE Trans Control Syst Technol 21(4):1067–1078

    Article  Google Scholar 

  6. Bossanyi EA, Savini B, Iribas M, Hau M, Fischer B, Schlipf D, van Engelen T, Rossetti M, Carcangui CE (2012) Advanced controller research for multi-MW wind turbines in the UPWIND project. Wind Energy 15:119–145

    Article  Google Scholar 

  7. Germanischer Lloyd (2010) Guideline for the certification of wind turbines edition 2010. Germanischer Lloyd, Hamburg

    Google Scholar 

  8. Hau E (2010) Wind turbines: fundamentals, technologies, application economics. Springer, New York

    Google Scholar 

  9. Jonkman, BJ, Jonkman JM (2013) Addendum to the user’s guides for FAST, A2AD, and AeroDyn released March 2010-February 2013. Tech rep, National Renewable Energy Laboratory, Golden, Colorado.

    Google Scholar 

  10. Köhler M, Jenne S, Pötter K, Zenner H (2012) Zählverfahren und Lastannahme in der Betriebs- festigkeit, German edn. Springer, Berlin

    Google Scholar 

  11. Laino DJ, Hansen AC (2002) AeroDyn v12.50: user’s guide. Tech rep, Windward Engineering (prepared for the National Renewable Energy Laboratory), Salt Lake, City.

    Google Scholar 

  12. MSC. Software (2012) Adams 2012.2: Adams 2012 Online help tech. rep., MSC Software Corporation, Santa Ana, California.

    Google Scholar 

  13. Munteanu I, Bratcu AI, Cutululis NA, Ceanga E (2008) Optimal control of wind energy systems: towards a global approach (advances in industrial control). Springer, New York

    Google Scholar 

  14. Rachholz R, Woernle C, Zierath J (2012) Dynamics of a controlled flexible multi-body model of a 2 MW wind turbine. In: Proceedings of the 2nd joint international conference on multibody system dynamics-IMSD, Stuttgart.

    Google Scholar 

  15. Schiehlen W, Eberhard P (2004) Technische Dynamik. Teubner B.G, GmbH, Leipzig

    Book  MATH  Google Scholar 

  16. Shabana AA (2010) Dynamics of multibody systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Simpack: Simpack v9.3, (2013) Documentation to Simpack. Tech rep, Simpack AG, Gilching, Germany

    Google Scholar 

  18. Suzuki A (2000) Application of dynamic inflow theory to wind turbine rotors. Ph.D. thesis, Department of Mechanical Engineering, University of Utah, Salt Lake City.

    Google Scholar 

  19. Taubert M, Clauß S, Freudenberg H, Keil A, März M, Moser W, Wulf HO (2011) Wind Turbine Design Codes: Eine Validierung von alaska/Wind mit BLADED, FAST und FLEX5. Tech rep Institut für Mechatronik, Chemnitz

    Google Scholar 

  20. van Garrel A (2003) Development of a wind turbine aerodynamics simulation module. Tech. rep, ECN Wind Energy, Petten, The Netherlands

    Google Scholar 

  21. Woernle C (2011) Mehrkörpersysteme: eine Einführung in die Kinematik und Dynamik von systemen starrer Körper, German edn. Springer, Berlin

    Book  Google Scholar 

  22. Woernle C, Kaehler M, Rachholz R, Herrmann S, Zierath J, Souffrant R, Bader R (2010) Robot-based HiL test of joint endoprostheses. In: Lenarcic J (ed) Advances in robot kinematics: analysis and control. Springer, Berlin

    Google Scholar 

  23. Zierath J, Woernle C, Heyden T (2009) Elastic multibody models of transport aircraft high-lift mechanisms. AIAA J Aircraft 46(5):1513–1524

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Zierath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zierath, J., Rachholz, R., Woernle, C. (2014). Comparison and Field Test Validation of Various Multibody Codes for Wind Turbine Modelling. In: Terze, Z. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-319-07260-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07260-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07259-3

  • Online ISBN: 978-3-319-07260-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics