Skip to main content

Marine Cyanobacteria Compounds with Anticancer Properties: Implication of Apoptosis

  • Chapter
  • First Online:
Handbook of Anticancer Drugs from Marine Origin

Abstract

Marine cyanobacteria have been proved to be an important source of potential anticancer drugs. Although several compounds were found to be cytotoxic to cancer cells in culture, the pathways by which cells are affected are still poorly elucidated. For some compounds, cancer cell death was attributed to an implication of apoptosis through morphological apoptotic features, implication of caspases and proteins of the Bcl-2 family, and other mechanisms such as interference with microtubules dynamics, cell cycle arrest and inhibition of proteases other than caspases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amon A (1999) The spindle checkpoint. Curr Opin Genet Dev 9(1):69–75

    CAS  Google Scholar 

  2. Andrianasolo EH et al (2005) Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org Lett 7(7):1375–1378

    CAS  Google Scholar 

  3. Balunas MJ et al (2012) Coibacins A-D, antileishmanial marine cyanobacterial polyketides with intriguing biosynthetic origins. Org Lett 14(15):3878–3881

    CAS  Google Scholar 

  4. Barnhart BC et al (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. Embo J 23(15):3175–3185

    CAS  Google Scholar 

  5. Barrett AJ (1981) Leukocyte elastase. Methods Enzymol 80:581–588

    Google Scholar 

  6. Beckwith M, Urba WJ, Longo DL (1993) Longo, growth inhibition of human lymphoma cell lines by the marine products, dolastatins 10 and 15. J Natl Cancer Inst 85(6):483–488

    CAS  Google Scholar 

  7. Bernardo PH et al (2007) Structure-activity delineation of quinones related to the biologically active Calothrixin B. Bioorg Med Chem Lett 17(1):82–85

    CAS  Google Scholar 

  8. Boudreau PD et al (2012) Viequeamide A, a cytotoxic member of the kulolide superfamily of cyclic depsipeptides from a marine button cyanobacterium. J Nat Prod 75(9):1560–1570

    CAS  Google Scholar 

  9. Carpenter EJ, Subramaniam A, Capone DG (2004) Biomass and primary productivity of the cyanobacterium Trichodesmium spp. in the tropical N Atlantic ocean. Deep-Sea Res Part I-Oceanogr Res Pap 51(2):73–203

    Google Scholar 

  10. Castenholz RW (2001) General characteristics of the cyanobacteria. In: D.R.B.R.W.C. (ed) Bergey’s manual of systematic bacteriology. Springer, New York, pp 474–487

    Google Scholar 

  11. Catassi A et al (2006) Characterization of apoptosis induced by marine natural products in non small cell lung cancer A549 cells. Cell Mol Life Sci 63(19–20):2377–2386

    CAS  Google Scholar 

  12. Chang TT et al (2011) Isomalyngamide A, A-1 and their analogs suppress cancer cell migration in vitro. Eur J Med Chem 46(9):3810–3819

    CAS  Google Scholar 

  13. Chen XX, Smith GD, Waring P (2003) Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. J Appl Phycol 15(4):269–277

    CAS  Google Scholar 

  14. Choi H et al (2010) The hoiamides, structurally intriguing neurotoxic lipopeptides from Papua New Guinea marine cyanobacteria. J Nat Prod 73(8):1411–1421

    CAS  Google Scholar 

  15. Choi H et al (2012) Lyngbyabellins K-N from two Palmyra Atoll collections of the marine Cyanobacterium Moorea bouillonii. Eur J Org Chem 27:5141–5150

    Google Scholar 

  16. Costa M et al (2012) Marine cyanobacteria compounds with anticancer properties: a review on the implication of apoptosis. Mar Drugs 10(10):2181–2207

    CAS  Google Scholar 

  17. Costa M et al (2014) Exploring bioactive properties of marine cyanobacteria isolated from the Portuguese coast: high potential as a source of anticancer compounds. Mar Drugs 12(1):98–114

    Google Scholar 

  18. Costa-Rodrigues J et al (2012) Cytotoxicity of marine cyanobacteria extracts on osteosarcoma cells. Bone 50:S181–S182

    Google Scholar 

  19. Davies-Coleman MT et al (2003) Isolation of homodolastatin 16, a new cyclic depsipeptide from a Kenyan collection of Lyngbya majuscula. J Nat Prod 66(5):712–715

    CAS  Google Scholar 

  20. Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B (2008) Cysteine Cathepsins Trigger Caspase-dependent Cell Death through Cleavage of Bid and Antiapoptotic Bcl-2 Homologues. J Biol Chem 283(27):19140–19150

    Google Scholar 

  21. Edwards DJ et al (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11(6):817–833

    CAS  Google Scholar 

  22. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    CAS  Google Scholar 

  23. Engene N et al (2011) Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ Microbiol 13(6):1601–1610

    CAS  Google Scholar 

  24. Engene N et al (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 62(Pt 5):1171–1178

    Google Scholar 

  25. Folmer F et al (2010) Photosynthetic marine organisms as a source of anticancer compounds. Phytochem Rev 9(4):557–579

    CAS  Google Scholar 

  26. Gerwick WH et al (1994) Structure of Curacin A, a novel antimitotic, antiproliferative, and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59:1243–1245

    CAS  Google Scholar 

  27. Gerwick WH et al (2008) Giant marine cyanobacteria produce exciting potential pharmaceuticals. Microbe 3:8

    Google Scholar 

  28. Golakoti T et al (2001) Isolation and structure determination of nostocyclopeptides A1 and A2 from the terrestrial cyanobacterium Nostoc sp. ATCC53789. J Nat Prod 64(1):54–59

    CAS  Google Scholar 

  29. Gregory CD, Devitt A (2004) The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically? Immunology 113(1):1–14

    CAS  Google Scholar 

  30. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899–1911

    CAS  Google Scholar 

  31. Gross H et al (2010) Two cytotoxic stereoisomers of malyngamide C, 8-epi-malyngamide C and 8-O-acetyl-8-epi-malyngamide C, from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 71(14–15):1729–1735

    CAS  Google Scholar 

  32. Gunasekera SP et al (2008) Dragonamides C and D, linear lipopeptides from the marine cyanobacterium brown Lyngbya polychroa. J Nat Prod 71(5):887–890

    CAS  Google Scholar 

  33. Gunasekera SP et al (2010) Molassamide, a depsipeptide serine protease inhibitor from the marine cyanobacterium Dichothrix utahensis. J Nat Prod 73(3):459–462

    CAS  Google Scholar 

  34. Gutierrez M et al (2008) Apratoxin D, a potent cytotoxic cyclodepsipeptide from papua new guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida. J Nat Prod 71(6):1099–1103

    CAS  Google Scholar 

  35. Gutierrez M et al (2010) Malyngolide dimer, a bioactive symmetric cyclodepside from the panamanian marine cyanobacterium Lyngbya majuscula. J Nat Prod 73(4):709–711

    CAS  Google Scholar 

  36. Han B et al (2005) The wewakpeptins, cyclic depsipeptides from a Papua new guinea collection of the marine cyanobacterium Lyngbya semiplena. J Org Chem 70(8):3133–3139

    CAS  Google Scholar 

  37. Han BN et al (2005) Isolation and structure of five lyngbyabellin derivatives from a Papua new guinea collection of the marine cyanobacterium Lyngbya majuscula. Tetrahedron 61(49):11723–11729

    CAS  Google Scholar 

  38. Han B et al (2006) Aurilides B and C, cancer cell toxins from a Papua new guinea collection of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 69(4):572–575

    CAS  Google Scholar 

  39. Harrigan GG et al (1998) Symplostatin 1: a dolastatin 10 analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod 61(9):1075–1077

    CAS  Google Scholar 

  40. Hartman H (1998) Photosynthesis and the origin of life. Orig Life Evol Biosph 28:515–521

    CAS  Google Scholar 

  41. Hau AM et al (2013) Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells. PLoS One 8(6):e65250

    CAS  Google Scholar 

  42. Horgen FD et al (2002) Malevamide D: isolation and structure determination of an isodolastatin H analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod 65(4):487–491

    CAS  Google Scholar 

  43. Jimenez JI, Scheuer PJ (2001) New lipopeptides from the Caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 64(2):200–203

    CAS  Google Scholar 

  44. Jones AC et al (2010) The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 27(7):1048–1065

    CAS  Google Scholar 

  45. Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10(1):123–130

    CAS  Google Scholar 

  46. Kalemkerian GP et al (1999) Activity of dolastatin 10 against small-cell lung cancer in vitro and in vivo: induction of apoptosis and bcl-2 modification. Cancer Chemother Pharmacol 43(6):507–515

    CAS  Google Scholar 

  47. Keepers YP et al (1991) Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur J Cancer 27(7):897–900

    CAS  Google Scholar 

  48. Khan QA, Lu J, Hecht SM (2009) Calothrixins, a new class of human DNA topoisomerase I poisons. J Nat Prod 72(3):438–442

    CAS  Google Scholar 

  49. Kobayashi H, Shinohara H, Takeuchi K, Itoh M, Fujie M, Saitoh M and Terao T (1994) Inhibition of the soluble and tumor cell receptorbound plasmin by urinary trypsin inhibitor and subsequent effects on tumor cell invasion and metastasis. Cancer Res 54(3): 844–849

    Google Scholar 

  50. Kurokawa M, Kornbluth S (2009) Caspases and kinases in a death grip. Cell 138(5):838–854

    CAS  Google Scholar 

  51. Kwan JC et al (2009) Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J Med Chem 52(18):5732–5747

    CAS  Google Scholar 

  52. Kwan JC et al (2009) Lyngbyastatins 8-10, elastase inhibitors with cyclic depsipeptide scaffolds isolated from the marine cyanobacterium Lyngbya semiplena. Mar Drugs 7(4):528–538

    CAS  Google Scholar 

  53. Leao PN et al (2013) Antitumor activity of Hierridin B, a cyanobacterial secondary metabolite found in both filamentous and unicellular marine strains. PLoS One 8(7):e69562

    CAS  Google Scholar 

  54. Linington RG et al (2008) Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine Cyanobacterium Symploca sp. J Nat Prod 71(1):22–27

    CAS  Google Scholar 

  55. Luesch H et al (2000) Isolation, structure determination, and biological activity of Lyngbyabellin A from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 63(5):611–615

    CAS  Google Scholar 

  56. Luesch H et al (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64(7):907–910

    CAS  Google Scholar 

  57. Luesch H et al (2001) Pitipeptolides A and B, new cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 64(3):304–307

    CAS  Google Scholar 

  58. Luesch H et al (2001) Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 123(23):5418–5423

    CAS  Google Scholar 

  59. Luesch H et al (2002) Lyngbyaloside B, a new glycoside macrolide from a Palauan marine cyanobacterium, Lyngbya sp. J Nat Prod 65(12):1945–1948

    CAS  Google Scholar 

  60. Luesch H et al (2002) New apratoxins of marine cyanobacterial origin from Guam and Palau. Bioorg Med Chem 10(6):1973–1978

    CAS  Google Scholar 

  61. Luesch H et al (2002) Symplostatin 3, a new dolastatin 10 analogue from the marine cyanobacterium Symploca sp. VP452. J Nat Prod 65(1):16–20

    CAS  Google Scholar 

  62. Ma D et al (2006) Total synthesis of the cyclodepsipeptide apratoxin A and its analogues and assessment of their biological activities. Chemistry 12(29):7615–7626

    CAS  Google Scholar 

  63. MacMillan JB, Molinski TF (2002) Caylobolide A, a unique 36-membered macrolactone from a Bahamian Lyngbya majuscula. Org Lett 4(9):1535–1538

    CAS  Google Scholar 

  64. Malloy KL et al (2011) Malyngamide 2, an oxidized lipopeptide with nitric oxide inhibiting activity from a Papua new guinea marine cyanobacterium. J Nat Prod 74(1):95–98

    CAS  Google Scholar 

  65. Marquez BL et al (2002) Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J Nat Prod 65(6):866–871

    CAS  Google Scholar 

  66. Martins RF et al (2008) Antimicrobial and cytotoxic assessment of marine cyanobacteria-Synechocystis and Synechococcus. Mar Drugs 6(1):1–11

    CAS  Google Scholar 

  67. Martins R et al (2013) Cytotoxicity of picocyanobacteria strains of the genera Cyanobium on osteosarcoma cells. In: European calcified tissue society conference ECTS 2013. Lisbon (Portugal)

    Google Scholar 

  68. Matthew S et al (2007) Lyngbyastatin 4, a dolastatin 13 analogue with elastase and chymotrypsin inhibitory activity from the marine cyanobacterium Lyngbya confervoides. J Nat Prod 70(1):124–127

    CAS  Google Scholar 

  69. Matthew S, Schupp PJ, Luesch H (2008) Apratoxin E, a cytotoxic peptolide from a guamanian collection of the marine cyanobacterium Lyngbya bouillonii. J Nat Prod 71(6):1113–1116

    CAS  Google Scholar 

  70. Matthew S et al (2008) Pompanopeptins A and B, new cyclic peptides from the marine cyanobacterium Lyngbya confervoides. Tetrahedron 64(18):4081–4089

    CAS  Google Scholar 

  71. Matthew S, Paul VJ, Luesch H (2009) Largamides A-C, tiglic acid-containing cyclodepsipeptides with elastase-inhibitory activity from the marine cyanobacterium Lyngbya confervoides. Planta Med 75(5):528–533

    CAS  Google Scholar 

  72. Matthew S, Paul VJ, Luesch H (2009) Tiglicamides A-C, cyclodepsipeptides from the marine cyanobacterium Lyngbya confervoides. Phytochemistry 70(17–18):2058–2063

    CAS  Google Scholar 

  73. Matthew S et al (2010) Cytotoxic halogenated macrolides and modified peptides from the apratoxin-producing marine cyanobacterium Lyngbya bouillonii from Guam. J Nat Prod 73(9):1544–1552

    CAS  Google Scholar 

  74. Medina RA et al (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130(20):6324–6325

    CAS  Google Scholar 

  75. Mevers E et al (2011) Cytotoxic veraguamides, alkynyl bromide-containing cyclic depsipeptides from the marine cyanobacterium cf. Oscillatoria margaritifera. J Nat Prod 74(5):928–936

    CAS  Google Scholar 

  76. Molinski TF et al (2009) Drug development from marine natural products. Nat Rev Drug Discov 8(1):69–85

    CAS  Google Scholar 

  77. Montaser R, Paul VJ, Luesch H (2011) Pitipeptolides C-F, antimycobacterial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula from Guam. Phytochemistry 72(16):2068–2074

    CAS  Google Scholar 

  78. Montaser R et al (2011) Pitiprolamide, a proline-rich dolastatin 16 analogue from the marine cyanobacterium Lyngbya majuscula from Guam. J Nat Prod 74(1):109–112

    CAS  Google Scholar 

  79. Mooberry SL, Busquets L, Tien G (1997) Induction of apoptosis by cryptophycin 1, a new antimicrotubule agent. Int J Cancer 73(3):440–448

    CAS  Google Scholar 

  80. Mooberry SL et al (2003) The molecular pharmacology of symplostatin 1: a new antimitotic dolastatin 10 analog. Int J Cancer 104(4):512–521

    CAS  Google Scholar 

  81. Moroy G, Alix AJP, Sapi J, Hornebeck W, Bourguet E (2012) Neutrophil Elastase as a Target in Lung Cancer. Anti-Cancer Agents Med Chem 12(6):565–579

    Google Scholar 

  82. Nogle LM, Okino T, Gerwick WH (2001) Antillatoxin B, a neurotoxic lipopeptide from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 64(7):983–985

    CAS  Google Scholar 

  83. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619

    CAS  Google Scholar 

  84. Paerl HW (2002) Marine plankton. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Springer, Netherlands, pp 121–148

    Google Scholar 

  85. Pereira AR et al (2012) The Carmaphycins: new proteasome inhibitors exhibiting an alpha, beta-epoxyketone warhead from a marine cyanobacterium. Chembiochem 13(6):810–817

    CAS  Google Scholar 

  86. Pettit GR et al (2008) Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms (1a). J Nat Prod 71(3):438–444

    CAS  Google Scholar 

  87. Pitot HC et al (1999) Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors. Clin Cancer Res 5(3):525–531

    CAS  Google Scholar 

  88. Plaza A, Bewley CA (2006) Largamides A-H, unusual cyclic peptides from the marine cyanobacterium Oscillatoria sp. J Org Chem 71(18):6898–6907

    CAS  Google Scholar 

  89. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284(33):21777–21781

    CAS  Google Scholar 

  90. Rubio BK et al (2010) Depsipeptides from a Guamanian marine cyanobacterium, Lyngbya bouillonii, with selective inhibition of serine proteases. Tetrahedron Lett 51(51):6718–6721

    CAS  Google Scholar 

  91. Salvador LA, Paul VJ, Luesch H (2010) Caylobolide B, a macrolactone from symplostatin 1-producing marine cyanobacteria Phormidium spp. from Florida. J Nat Prod 73(9):1606–1609

    CAS  Google Scholar 

  92. Salvador LA et al (2011) Veraguamides A–G, cyclic hexadepsipeptides from a dolastatin 16-producing cyanobacterium Symploca cf. hydnoides from Guam. J Nat Prod 74(5):917–927

    CAS  Google Scholar 

  93. Schopf WJ (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Dordrecht , Kluwer Academic Publishers

    Google Scholar 

  94. Selheim F et al (2005) Neuro-apoptogenic and blood platelet targeting toxins in benthic marine cyanobacteria from the Portuguese coast. Aquat Toxicol 74(4):294–306

    CAS  Google Scholar 

  95. Shaala LA et al (2013) Malyngamide 4, a new lipopeptide from the Red sea marine cyanobacterium Moorea producens (formerly Lyngbya majuscula). Phytochem Lett 6(2):183–188

    CAS  Google Scholar 

  96. Shi YG (2004) Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci 13(8):1979–1987

    CAS  Google Scholar 

  97. Simmons TL et al (2006) Belamide A, a new antimitotic tetrapeptide from a Panamanian marine cyanobacterium. Tetrahedron Lett 47(20):3387–3390

    CAS  Google Scholar 

  98. Singh RK et al (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot (Tokyo) 64(6):401–412

    Google Scholar 

  99. Sisay MT et al (2009) Inhibition of human leukocyte elastase by brunsvicamides a-C: cyanobacterial cyclic peptides. ChemMedChem 4(9):1425–1429

    CAS  Google Scholar 

  100. Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276(10):7320–7326

    CAS  Google Scholar 

  101. Soreide K, Janssen EA, Korner H, Baak JP (2006) Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis. J Pathol 209(2): 147–156

    Google Scholar 

  102. Song JS, Kang CH, Rhee CK, Yoon HK, Kim YK, Moon HS, Park SH (2009) Effects od elastase inhibitor on the epithelial cell apoptosis in bleomycin pulmonary fibrosis. Exp Lung Res 35(10): 817–829

    Google Scholar 

  103. Soria-Mercado IE et al (2009) Alotamide A, a novel neuropharmacological agent from the marine cyanobacterium Lyngbya bouillonii. Org Lett 11(20):4704–4707

    CAS  Google Scholar 

  104. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin XM, Turk V, Salvesen GS (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276(5): 3149–3157

    Google Scholar 

  105. Taniguchi M et al (2010) Palmyramide A, a cyclic depsipeptide from a Palmyra Atoll collection of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 73(3):393–398

    CAS  Google Scholar 

  106. Taori K et al (2007) Lyngbyastatins 5-7, potent elastase inhibitors from Floridian marine cyanobacteria, Lyngbya spp. J Nat Prod 70(10):1593–1600

    CAS  Google Scholar 

  107. Taori K, Paul VJ, Luesch H (2008) Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. J Nat Prod 71(9):1625–1629

    CAS  Google Scholar 

  108. Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130(6):1806–1807

    CAS  Google Scholar 

  109. Teruya T et al (2009) Bisebromoamide, a potent cytotoxic peptide from the marine cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Org Lett 11(21):5062–5065

    CAS  Google Scholar 

  110. Teruya T et al (2009) Biselyngbyaside, a macrolide glycoside from the marine cyanobacterium Lyngbya sp. Org Lett 11(11):2421–2424

    CAS  Google Scholar 

  111. Thornburg CC et al (2013) Apratoxin H and apratoxin A sulfoxide from the Red sea cyanobacterium Moorea producens. J Nat Prod 76(9):1781–1788

    CAS  Google Scholar 

  112. Tidgewell K et al (2010) Evolved diversification of a modular natural product pathway: apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. Chembiochem 11(10):1458–1466

    CAS  Google Scholar 

  113. Tripathi A et al (2011) Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 72:2369–2375

    CAS  Google Scholar 

  114. Tripathi A et al (2012) Biochemical studies of the lagunamides, potent cytotoxic cyclic depsipeptides from the marine cyanobacterium Lyngbya majuscula. Mar Drugs 10(5):1126–1137

    CAS  Google Scholar 

  115. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nature Rev 5(9):785–799

    Google Scholar 

  116. Turner T et al (1998) Treatment of human prostate cancer cells with dolastatin 10, a peptide isolated from a marine shell-less mollusc. Prostate 34(3):175–181

    CAS  Google Scholar 

  117. Wall NR, Mohammad RM, Al-Katib AM (1999) Bax:Bcl-2 ratio modulation by bryostatin 1 and novel antitubulin agents is important for susceptibility to drug induced apoptosis in the human early pre-B acute lymphoblastic leukemia cell line, Reh. Leuk Res 23(10):881–888

    CAS  Google Scholar 

  118. White JD et al (2004) Total synthesis and biological evaluation of + -kalkitoxin, a cytotoxic metabolite of the cyanobacterium Lyngbya majuscula. Org Biomol Chem 2(14):2092–2102

    CAS  Google Scholar 

  119. Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol 203(3):201–218

    CAS  Google Scholar 

  120. Williams PG et al (2002) Isolation and structure determination of obyanamide, a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium Lyngbya confervoides. J Nat Prod 65(1):29–31

    CAS  Google Scholar 

  121. Williams PG et al (2002) Tasiamide, a cytotoxic peptide from the marine cyanobacterium Symploca sp. J Nat Prod 65(9):1336–1339

    CAS  Google Scholar 

  122. Williams PG et al (2003) Tasipeptins A and B: new cytotoxic depsipeptides from the marine cyanobacterium Symploca sp. J Nat Prod 66(5):620–624

    CAS  Google Scholar 

  123. Williams PG et al (2003) The isolation and structure elucidation of Tasiamide B, a 4-amino-3-hydroxy-5-phenylpentanoic acid containing peptide from the marine Cyanobacterium Symploca sp. J Nat Prod 66(7):1006–1009

    CAS  Google Scholar 

  124. Williams PG et al (2003) The structure of Palau’amide, a potent cytotoxin from a species of the marine cyanobacterium Lyngbya. J Nat Prod 66(12):1545–1549

    CAS  Google Scholar 

  125. Williams PG et al (2003) Ulongapeptin, a cytotoxic cyclic depsipeptide from a Palauan marine cyanobacterium Lyngbya sp. J Nat Prod 66(5):651–654

    CAS  Google Scholar 

  126. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    CAS  Google Scholar 

  127. Wrasidlo W et al (2008) The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. Proc Natl Acad Sci U S A 105(7):2313–2318

    CAS  Google Scholar 

  128. Yonezawa T et al (2012) Biselyngbyaside, isolated from marine cyanobacteria, inhibits osteoclastogenesis and induces apoptosis in mature osteoclasts. J Cell Biochem 113(2):440–448

    CAS  Google Scholar 

  129. Zeng X et al (2010) Total synthesis and biological evaluation of largazole and derivatives with promising selectivity for cancers cells. Org Lett 12(6):1368–1371

    CAS  Google Scholar 

  130. Zou B, Long K, Ma DW (2005) Total synthesis and cytotoxicity studies of a cyclic depsipeptide with proposed structure of palau’amide. Org Lett 7(19):4237–4240

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Program and national funds through FCT—Foundation for Science and Technology, under the project PTDC/MAR/102638/2008, and partially under the projects PEst-C/MAR/LA0015/2013 and MARBIOTECH (reference NORTE-07-0124-FEDER-000047), co-financed by the North Portugal Regional Operational Programme (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Rosário Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

do Rosário Martins, M., Costa, M. (2015). Marine Cyanobacteria Compounds with Anticancer Properties: Implication of Apoptosis. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_29

Download citation

Publish with us

Policies and ethics