Skip to main content

Topography of Rough Dielectric Surfaces Utilizing Evanescent Illumination

  • Conference paper
  • First Online:
Advancement of Optical Methods in Experimental Mechanics, Volume 3

Abstract

The authors utilize optical evanescent fields to analyze the topography of metallic and non metallic surfaces. The methodology initiated with the phenomenon of planar surface waves produced by surface plasmon polaritons. By direct experimental observations in 2009 the method was extended to ceramic surfaces in the micron and sub-micron range. Since the ceramics are dielectric materials the plasmon polariton model cannot explain the observed phenomena. For almost a century researchers have analyzed surface electromagnetic waves observed in planar interfaces that involve metallic surfaces, or metallic surfaces and dielectric media. These studies resulted in the theory of surface-plasmon waves and surface-plasmon-polariton waves. Additional planar surface waves are the so called Dyakonov waves, Tamm waves, and Dyakonov–Tamm waves. These waves were originally theoretically derived by M.I. Dyakonov about 25 years ago and were observed for the first time in 2009. The Dyakonov–Tamm waves are generated in the interface of two dielectric materials with periodic internal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tamm I (1991) Selected papers. In: Bolotovsky B, Frenkel V.Ya (eds), Springer, Berlin

    Google Scholar 

  2. Dyakonov (1988) New type of electromagnetic wave propagating at an interface. Zh Eksp Teor Fiz 94:119–123

    Google Scholar 

  3. Lakhtakia A, Polo JA (2007) Dyakonov-Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material. J Eur Opt Soc 2(22): Article No. 07021

    Google Scholar 

  4. Agarwal K, Polo JA, Lakhtakia A (2009) Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material. J Opt A Pure Appl Opt 11(7): Article No. 074003

    Google Scholar 

  5. Gao J, Lakhtakia A, Lei M (2011) Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films. SPIE J Nanophotonics 5(1): Article No. 051502

    Google Scholar 

  6. Faryad M, Lakhtakia A (2013) Prism-coupled excitation of Dyakonov–Tamm waves. Opt Commun 294:192–197

    Article  Google Scholar 

  7. Maab H, Faryad M, Lakhtakia A (2013) Prism-coupled excitation of multiple Tamm waves. J Mod Opt 60(5):355–358

    Article  Google Scholar 

  8. Pulsifier DP, Faryad M, Lakhtakia A (2013) Observation of the Dyakonov-Tamm wave. Phys Rev Lett 111(24): Article No. 243902

    Google Scholar 

  9. Sciammarella CA, Lamberti L (2006) Optical detection of information at the sub-wavelength level. In: Proceedings of the NANOMEC06 symposium on materials science and materials mechanics at the nanoscale, November 2006, Bari, Italy

    Google Scholar 

  10. Sciammarella CA, Lamberti L (2007) Determination of the shape of objects in the range 1/20 of the wavelength of light. In: Proceedings of 2007 SEM annual conference on experimental and applied mechanics, Springfield, MA, June 2007

    Google Scholar 

  11. Sciammarella CA, Lamberti L (2007) Observation of fundamental variables of optical techniques in the nanometric range. In: Gdoutos EE (ed) Experimental analysis of nano and engineering materials and structures. Springer, The Netherlands

    Google Scholar 

  12. Sciammarella CA, Lamberti L, Demelio G, Di Cuonzo A, Boccaccio A (2008) Application of plasmons to the determination of surface profile and contact stress distribution. In: Proceedings of XXXVIII meeting of the Italian Association of stress analysis. Rome, Italy, September 2008

    Google Scholar 

  13. Sciammarella CA, Lamberti L (2008) The equivalent of fourier holography at the nano-range. In: Proceedings of the 2008 SEM XI international congress on experimental and applied mechanics, Orlando, FL, June 2008

    Google Scholar 

  14. Sciammarella CA, Lamberti L, Sciammarella FM, Demelio G, Dicuonzo A, Boccaccio A (2009) High accuracy micro scale measurements using a conventional far field microscope. In: Proceedings of the 2009 SEM annual conference on experimental and applied mechanics, Albuquerque, NM, June 2009

    Google Scholar 

  15. Sciammarella CA, Lamberti L, Sciammarella FM (2009) The equivalent of Fourier holography at the nanoscale. Exp Mech 49:747–773

    Article  Google Scholar 

  16. Sciammarella CA, Lamberti L, Sciammarella FM (2010) Light generation at the nano scale, key to interferometry at the nano scale. In: Proulx T (ed) Conference proceedings of the society for experimental mechanics series; experimental and applied mechanics, vol 6. Springer, New York, pp 103–115

    Google Scholar 

  17. Sciammarella CA, Lamberti L, Sciammarella FM, Demelio G, Di Cuonzo A, Boccaccio A (2010) Application of plasmons to the determination of surface profile and contact strain distribution. Strain 46(4):307–323

    Article  Google Scholar 

  18. Sciammarella CA, Sciammarella FM, Lamberti L (2011) Experimental mechanics in nano-engineering. In: Gdoutos EE, Kounadis AN (eds) Recent advances in mechanics. Springer, The Netherlands, pp 275–312

    Chapter  Google Scholar 

  19. Sciammarella CA, Lamberti L, Sciammarella FM (2011) Chapter 9: Optical holography reconstruction of nano-objects. In: Rosen J (ed) Holography, research and technologies. INTECH, Rijeka, pp 191–216

    Google Scholar 

  20. Sciammarella CA, Lamberti L, Sciammarella FM (2013) Chapter 11: Holography at the nano level with visible light wavelengths. In: Mihaylova E (ed) Holography—basic principles and contemporary applications. INTECH, Rijeka, pp 243–281

    Google Scholar 

  21. Sciammarella FM, Sciammarella CA, Lamberti L (2013) Chapter 17: Nano-holographic interferometry for in vivo observations. In: Shaked NT, Zalevskey Z, Satterwhite LL (eds) Biomedical optical phase microscopy and nanoscopy. Elsevier, The Netherlands, pp 353–385

    Chapter  Google Scholar 

  22. Berry MV (1994) Evanescent and real waves in quantum billiards and Gaussian beams. J Phys A Math Gen 27:391–398

    Article  Google Scholar 

  23. Girard C, Dereux A, Martin OJF, Devel M (1995) Generation of optical standing waves around mesoscopic surface structures: scattering and light confinement. Phys Rev B 52(4):2889–2898

    Article  Google Scholar 

  24. Toraldo di Francia G (1952) Super-gain antennas and optical resolving power. Nuovo Cimento 9(S3):426–435

    Article  Google Scholar 

  25. Toraldo di Francia G (1958) La diffrazione della luce. Edizioni Scientifiche Einaudi, Torino

    Google Scholar 

  26. Vigoureux JM (2003) De l’onde évanescente de Fresnel au champ proche optique. Annales de la Fondation Luis de Broglie 28(3–4):525–548

    Google Scholar 

  27. Papoulis A (1962) The Fourier integral and its applications. McGraw-Hill, New York

    MATH  Google Scholar 

  28. Kretschmann E (1974) Die Bestimmung der Oberflächenrauhigkeit dünner schichten durch Messung der Winkelabhängigkeit der Streustrahlung von Oberflächen Plasma Schwingungen. Opt Commun 10:353–356

    Article  Google Scholar 

  29. Heitmann D (1977) Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces. J Phys C Solid State Phys 10:397–405

    Article  Google Scholar 

  30. Teng YY, Stern EA (1967) Plasmon radiation from metal gratings. Phys Rev Lett 19:511–514

    Article  Google Scholar 

  31. van de Hulst HC (1981) Light scattering by small particles, 2nd edn. Courier Dover Publications, Mineola, NY

    Google Scholar 

  32. Sciammarella CA, Sciammarella FM (2012) Experimental mechanics of solids. Wiley, Chichester

    Book  Google Scholar 

  33. Ebbeni J (1966) Etude du phénomène de moirure par réflexion d’un réseau plan sur une surface gauchie et de son application en analyse des contraintes et des déformations. VDI Experimentelle Spannung Analyse Berichte 102:75–81

    Google Scholar 

  34. Sciammarella CA, Combel O (1995) Interferometric reflection moiré. In: Pryputniewicz RJ et al (eds) Materials characterization interferometry VII, vol 2545, Proceedings of SPIE. International Society for Optical Engineering, Bellingham, WA, pp 72–85

    Google Scholar 

  35. Guild J (1956) The interference systems of crossed diffraction gratings. Clarendon, Oxford

    MATH  Google Scholar 

  36. Stout KF, Blunt L (2000) Three-dimensional surface topography, 2nd edn. Penton Press, London

    Google Scholar 

  37. International Organization for Standardization (1997) Surface texture: profile method—terms, definitions and surface texture parameters. ISO Specification 4287

    Google Scholar 

  38. Sciammarella CA, Lamberti L, Sciammarella FM (2010) High accuracy optical measurements of surface topography. In: Proulx T (ed) Conference proceedings of the society for experimental mechanics series; experimental and applied mechanics, vol 6. Springer, New York, pp 1–7

    Google Scholar 

  39. Born M, Wolf E (1999) Principles of optics, VIIth edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Sciammarella FM, Sciammarella CA, Lamberti L, Burra V (2010) Industrial finishes of ceramic surfaces at the micro-level and its influence on strength. In: Proulx T (ed) Conference proceedings of the society for experimental mechanics series; experimental and applied mechanics, vol 6. Springer, New York, pp 9–16

    Google Scholar 

  41. Sciammarella FM, Matusky MJ (2011) Correlation between mechanical strength and surface conditions of laser assisted machined silicon nitride. In: Proulx T (ed) Conference proceedings of the society for experimental mechanics series; experimental and applied mechanics, vol 5. Springer, New York, pp 187–197

    Google Scholar 

  42. Quinn GD (2012) Fractography of glasses and ceramics VI: ceramic transactions, vol 230. Wiley-American Ceramic Society, USA

    Google Scholar 

  43. General Stress Optics Inc. Holo-Moiré Strain Analyzer Software HoloStrain, Version 2.0. General Stress Optics Inc, Chicago, IL. http://www.stressoptics.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Sciammarella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Sciammarella, F.M., Sciammarella, C.A., Lamberti, L. (2015). Topography of Rough Dielectric Surfaces Utilizing Evanescent Illumination. In: Jin, H., Sciammarella, C., Yoshida, S., Lamberti, L. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-06986-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06986-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06985-2

  • Online ISBN: 978-3-319-06986-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics