Skip to main content

Advances in Microbial Insect Control in Horticultural Ecosystem

  • Chapter
  • First Online:
Sustainable Horticultural Systems

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 2))

Abstract

The use of microbial organisms as biological control agents has progressed significantly since Metschnikoff launched the first attempt at microbial insect control with Metarhizium anisopliae in 1879. Following the lead of Metschnikoff, entomopathogenic nematodes, fungi, bacteria and viruses have been extensively studied for commercialization and practical use as biopesticides in inundative releases against insect pests in various cropping systems. However, compared with chemical insecticides, these microbial products represent less than 2 % of the total insecticide market share. Factors such as control efficacy, cost, formulation, shelf life, application techniques, and persistence have limited the commercial use of these microbial control agents in insect pest management. This review discusses research advances for entomopathogens, especially commercialization, formulation and application techniques, for microbial biocontrol of insect pests in the horticultural ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akhurst RJ (1990) Safety to nontarget invertebrates of nematodes of economically important pests. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC, Boca Raton, pp 234–238

    Google Scholar 

  • Alves SB, Risco SH, Almeida LC (1984) Influence of photoperiod and temperature on the development and sporulation of Metarhizium anisopliae (Metsch.) Sorok. J Appl Entomol 97:127–129

    Google Scholar 

  • Alves SB, Pereira RM, Lopes RB et al (2003) Use of entomopathogenic fungi in Latin America. In: Upadhyay RK (ed) Advances in microbial control of insect pests. Kluwer, New York, pp 193–211

    Google Scholar 

  • Amiri B, Ibrahim L, Butt TM (1999) Antifeedant properties of destruxins and their use with the entomogenous fungus Metarhizium anisopliae for improved control of crucifer pests. Biocontrol Sci Technol 9:487–498

    Google Scholar 

  • Amiri-Besheli B, Khambay B, Cameron S et al (2000) Inter- and intra-specific variation in destruxin production by the insect pathogenic Metarhizium, and its significance to pathogenesis. Mycol Res 104:447–452

    CAS  Google Scholar 

  • Anbesse S, Sumaya NH, Dörfler AV et al (2013) Stabilisation of heat tolerance traits in Heterorhabditis bacteriophora through selective breeding and creation of inbred lines in liquid culture. BioControl 58:85–93

    Google Scholar 

  • Anke H, Steiner O (2002) Insecticidal and nematicidal metabolites from fungi. In: Esser K, Lemke PA, Bennet JV, Osiewacz HD (eds) The Mycota 10. Industrial applications. Springer, Berlin, pp 109–127

    Google Scholar 

  • Bagga S, Hu G, Screen SE et al (2004) Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324:159–169

    PubMed  CAS  Google Scholar 

  • Bai X, Grewal PS (2007) Identification of two down-regulated genes in entomopathogenic nematode Heterorhabditis bacteriophora infective juveniles upon contact with insect hemolymph. Mol Biochem Parasitol 156:162–166

    PubMed  CAS  Google Scholar 

  • Bai C, Shapiro-Ilan DI, Gaugler R et al (2004) Effect of EPN concentration on survival during cryopreservation in liquid nitrogen. J Nematol 36:281–284

    PubMed  PubMed Central  Google Scholar 

  • Bai C, Shapiro-Ilan DI, Gaugler R et al (2005) Stabilization of beneficial traits in Heterorhabditis bacteriophora through creation of inbred lines. Biol Control 32:220–227

    Google Scholar 

  • Bai X, Adams BJ, Ciche TA et al (2009) Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1. BMC Genomics 10, art. No. 205

    Google Scholar 

  • Bailey KL, Boyetchko SM, Längle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229

    Google Scholar 

  • Bartlett MC, Jaronski ST (1988) Mass production of entomogenous fungi for biological control of insects. In: Burge MN (ed) Fungi in biological control systems. Manchester University Press, Manchester, pp 61–85

    Google Scholar 

  • Bateman RP (1999) Delivery systems and protocols for biopesticides. In: Hall FR, Menn JJ (eds) Methods in biotechnology, biopesticides: use and delivery, vol 5. Humana, Totowa, pp 509–528

    Google Scholar 

  • Bateman R (2007) Production processes for anamorphic Fungi. IPARC, Silwood Park, Ascot, Berks. http://www.dropdata.net/mycoharvester/Mass_production.PDF. Accessed 11 Jan 2014

  • Bateman R, Chapple A (2001) The spray application of mycopesticide formulations. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents. CABI, Wallingford, pp 289–309

    Google Scholar 

  • Bateman RP, Carey M, Moore D et al (1993) The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann Appl Biol 122:145–152

    Google Scholar 

  • Bathon H (1996) Impact of entomopathogenic nematodes on non-target hosts. Biocontrol Sci Technol 6:421–434

    Google Scholar 

  • Begley JW (1990) Efficacy against insects in habitats other than soil. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC, Boca Raton, pp 215–231

    Google Scholar 

  • Behle R, Birthisel T (2013) Formulations of entomopathogens as bioinsecticides. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic, San Diego, pp 483–517

    Google Scholar 

  • Bernier L, Cooper RM, Charnley AK et al (1989) Transformation of the entomopathogenic fungus Metarhizium anisopliae to benomyl resistance. FEMS Microbiol Lett 60:261–266

    CAS  Google Scholar 

  • Bilgrami AL, Gaugler R, Shapiro-Ilan DI et al (2006) Source of trait deterioration in entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae during in vivo culture. Nematology 8:397–409

    Google Scholar 

  • Bixby A, Alm SR, Power K et al (2007) Susceptibility of four species of turfgrass-infesting scarabs (Coleoptera: Scarabaeidae) to Bacillus thuringiensis serovar japonensis strain Buibui. J Econ Entomol 100:1604–1610

    PubMed  CAS  Google Scholar 

  • Bogo MR, Rota CA, Pinto HJ et al (1998) A chitinase encoding gene (chit1 gene) from the entomopathogen Metarhizium anisopliae: isolation and characterization of genomic and full-length cDNA. Curr Microbiol 37:221–225

    PubMed  CAS  Google Scholar 

  • Bonning BC, Hoover K, Duffey S et al (1995) Production of polyhedra of the autographa californica nuclear polyhedrosis virus using the Sf21 and Tn5B1-4 cell lines and comparison with host-derived polyhedra by bioassay. J Invertebr Pathol 66:224–230

    PubMed  CAS  Google Scholar 

  • Boucias DG, Pendland JC (1998) Principles of insect pathology. Kluwer, Dordrecht

    Google Scholar 

  • Bradley CA, Black WE, Kearns R et al (1992) Role of production technology in mycoinsecticide development. In: Leatham GF (ed) Frontiers in industrial mycology. Chapman and Hall, New York, pp 160–179

    Google Scholar 

  • Braga GUL, Flint SD, Miller CD et al (2001) Both solar UVA and UVB radiation impair conidial curability and delay germination in the entomopathogenic fungus Metarhizium anisopliae. Photochem Photobiol 74:734–739

    PubMed  CAS  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS et al (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brousseau C, Charpentier G, Bellonick S (1996) Susceptibility of spruce budworm, Choristoneura fumiferana Clemens, to destruxins, cyclodepsipeptidic mycotoxins of Metarhizium anisopliae. J Invertebr Pathol 68:180–182

    CAS  Google Scholar 

  • Brownbridge M, Saito T, Buitenhuis R et al (2011) Developing a biologically-based IPM program for western flower thrips, Frankliniella occidentalis, in greenhouse floriculture. IOBC/wprs Bull 68:21–24

    Google Scholar 

  • Buerger P, Hauxwell C, Murray D (2007) Nucleopolyhedrovirus introduction in Australia. Virol Sin 22:173–179

    CAS  Google Scholar 

  • Burges HD (1998) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer, Dordrecht

    Google Scholar 

  • Butt TM, Jackson CW, Magan N (2001) Fungi as biological agents. CABI, Wallingford

    Google Scholar 

  • Carbonell LF, Hodge MR, Tomalski MD et al (1988) Synthesis of a gene coding for an insecticide-specific scorpion toxin neurotoxin and attempts to express it using baculovirus vectors. Gene 73:409–418

    PubMed  CAS  Google Scholar 

  • Carruthers RI, Soper RS (1987) Fungal diseases. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 357–416

    Google Scholar 

  • Chaston JM, Dillman AR, Shapiro-Ilan DI et al (2011) Outcrossing and crossbreeding recovers deteriorated traits in laboratory cultured Steinernema carpocapsae nematodes. Int J Parasitol 41:801–809

    PubMed  PubMed Central  Google Scholar 

  • Chavarria-Hernandez N, Espino-Garcia J-J, Sanjuan-Galindo R et al (2006) Monoxenic liquid culture of the entomopathogenic nematode Steinernema carpocapsae using a culture medium containing whey kinetics and modeling. J Biotechnol 125:75–84

    PubMed  CAS  Google Scholar 

  • Chavarria-Hernandez N, Ortega-Morales E, Vargas-Torres A et al (2010) Submerged monoxenic culture of the entomopathogenic nematode, Steinernema carpocapsae CABA01, in a mechanically agitated bioreactor: evolution of the hydrodynamic and mass transfer conditions. Biotechnol Bioprocess Eng 15:580–589

    CAS  Google Scholar 

  • Cho EM, Liu L, Farmerie W et al (2006) EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology 152:2843–2854

    PubMed  CAS  Google Scholar 

  • Cho EM, Kirkland BH, Holder DJ et al (2007) Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3438–3447

    PubMed  CAS  Google Scholar 

  • Ciche TA (2007) The biology and genome of Heterorhabditis bacteriophora. In: WormBook (ed) The C. elegans research community, WormBook. doi/10.1895/wormbook.1.135.1. http://www.wormbook.org. Accessed 20 Feb 2007

  • Coles RB (1980) The biology of Cordyceps aphodii (Sphaeriales: Clavicipitaceae). In: Crosby TK, Pottinger RP (eds) Proceedings of the 2nd Australasian conference on grassland invertebrate ecology. Palmerston North, New Zealand, pp 207–212

    Google Scholar 

  • Copping LG (2001) The biopesticide manual, 2nd edn. British Crop Protection Council, Farnham

    Google Scholar 

  • Cory JS, Franklin MT (2012) Evolution and the microbial control of insects. Evol Appl 5:455–469

    PubMed  PubMed Central  Google Scholar 

  • Cottrell TE, Shapiro-Ilan DI, Horton DL et al (2011) Laboratory virulence and orchard efficacy of entomopathogenic nematodes toward the lesser peachtree borer (Lepidoptera: Sesiidae). Environ Entomol 104:47–53

    CAS  Google Scholar 

  • Couch TL, Jurat-Fuentes JL (2013) Commercial production of entomopathogenic bacteria. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic, San Diego, pp 415–435

    Google Scholar 

  • Crangle RD (2011) Diatomite. 2011 minerals yearbook. U.S. Geological Survey, Washington, DC. http://minerals.usgs.gov/minerals/pubs/commodity/diatomite/myb1-2011-diato.pdf. Accessed 26 Nov 2013

  • Creighton CS, Fassuliotis G (1985) Heterorhabditis sp. (Nematoda: Heterorhabditidae): a nematode parasite isolated from the banded cucumber beetle Diabrotica balteata. J Nematol 17:150–153

    PubMed  CAS  PubMed Central  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J et al (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    PubMed  CAS  PubMed Central  Google Scholar 

  • Crickmore N, Baum J, Bravo A et al (2013) Bacillus thuringiensis toxin nomenclature. http://www.btnomenclature.info/. Accessed 7 Jan 2014

  • Data Requirements (2007) Data requirements for biochemical and microbial pesticides. 40 CFR Part 158. http://www.epa.gov/fedrgstr/EPA-PEST/2007/October/Day-26/p20828.htm

  • De Faria M, Wraight S (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    CAS  Google Scholar 

  • Dowds BCA, Peters A (2002) Virulence mechanisms. In: Gaugler R (ed) Entomopathogenic nematology. CABI, New York, pp 79–98

    Google Scholar 

  • Dutky SR (1959) Insect microbiology. Adv Appl Microbiol 1:175–200

    PubMed  CAS  Google Scholar 

  • Ehlers RU (2005) Forum on safety and regulation. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI (eds) Nematodes as biological control agents. CABI, Wallingford, pp 107–114

    Google Scholar 

  • Ekesi S, Maniania NK, Ampong-Nyarko K (1999) Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Sci Technol 9:177–185

    Google Scholar 

  • Elena GJ, Beatriz PJ, Alejandro P et al (2011) Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv Biol Res 5:22–27

    Google Scholar 

  • El-Salamouny S, Ranwala D, Shapiro M et al (2009) Tea, coffee, and cocoa as ultraviolet radiation protectants for the beet armyworm nucleopolyhedrovirus. J Econ Entomol 102:1767–1773

    PubMed  CAS  Google Scholar 

  • Evans HC (1989) Mycopathogens of insects of epigeal and aerial habitats. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic, London, pp 205–238

    Google Scholar 

  • Fang W, Leng B, Xiao Y et al (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363–370

    PubMed  CAS  PubMed Central  Google Scholar 

  • Faria M, Hajek AE, Wraight SP (2009) Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium acridum, and Metarhizium anisopliae. Biol Control 51:346–354

    Google Scholar 

  • Feng MG, Poprawski TJ, Khachatourians GG (1994) Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol Sci Technol 4:3–34

    Google Scholar 

  • Ferron P (1971) Problèmes poses par la mise au point d’un procédé de lutte microbiologique contre Melolontha melolontha au moyen de la mycose à Beauveria brongniartii (Delacr.) Siemaszko. Phytiatrie-Phytopharmacie 10:159–168

    Google Scholar 

  • Ferron P (1985) Fungal control. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon, Oxford, pp 313–346

    Google Scholar 

  • Ferron P, Fargues J, Riba G (1991) Fungi as microbial insecticides against pests. In: Arora DK, Ajello L, Mukerji KG (eds) Handbook of applied mycology, vol 2: humans, animals, and insects. Dekker, New York, pp 665–706

    Google Scholar 

  • ffrench-Constant RH, Waterfield N, Daborn P (2010) Insecticidal toxins from Photorhabdus and Xenorhabdus. In: Gilbert LI, Gill SS (eds) Insect control: biological and synthetic agents. Academic, Oxford, pp 313–327

    Google Scholar 

  • Forst S, Dowds B, Boemare N et al (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    PubMed  CAS  Google Scholar 

  • Freimoser FM, Hu G, St Leger RJ (2005) Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 151:361–371

    PubMed  CAS  Google Scholar 

  • Furlong MJ, Pell JK, Reddy GVP (1997) Premortality effects of Zoophthora radicans infection in Plutella xylostella. J Invertebr Pathol 70:214–220

    PubMed  Google Scholar 

  • Gaugler R (1981) Biological control potential of neoaplectanid nematodes. J Nematol 13:241–249

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gaugler R (1987) Entomogenous nematodes and their prospects for genetic improvement. In: Maramorosch K (ed) Biotechnology in invertebrate pathology and cell culture. Academic, San Diego, pp 457–484

    Google Scholar 

  • Gaugler R (1988) Ecological considerations in the biological control of soil-inhabiting insect pests with entomopathogenic nematodes. Agric Ecosyst Environ 24:351–360

    Google Scholar 

  • Gaugler R, Campbell JF (1991) Selection for enhanced host-finding of scarab larvae (Coleoptera: Scarabaeidae) in an entomopathogenic nematode. Environ Entomol 20:700–706

    Google Scholar 

  • Gaugler R, Georgis R (1991) Culture method and efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae). Biol Control 1:269–274

    Google Scholar 

  • Gaugler R, Kaya HK (1990) Entomopathogenic nematodes in biological control. CRC, Boca Raton

    Google Scholar 

  • Georgis R (1990) Formulation and application technology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC, Boca Raton, pp 173–194

    Google Scholar 

  • Georgis R, Gaugler R (1991) Predictability in biological control using entomopathogenic nematodes. J Econ Entomol 84:713–720

    Google Scholar 

  • Georgis R, Hague NGM (1991) Nematodes as biological insecticides. Pestic Outlook 2:29–32

    Google Scholar 

  • Georgis R, Manweiler SA (1994) Entomopathogenic nematodes: a developing biological control technology. Agric Zool Rev 6:63–94

    Google Scholar 

  • Georgis R, Kaya HK, Gaugler R (1991) Effect of steinernematid and heterorhabditid nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) on nontarget arthropods. Environ Entomol 20:815–822

    Google Scholar 

  • Georgis R, Koppenhöfer AM, Lacey LA et al (2006) Successes and failures in the use of parasitic nematodes for pest control. Biol Control 38:103–123

    Google Scholar 

  • Glare TR (1992) Fungal pathogens of scarabs. In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept, Andover, pp 63–77

    Google Scholar 

  • Glare TR, Milner RJ (1991) Ecology of entomopathogenic fungi. In: Arora DK, Ajello L, Mukerji LG (eds) Handbook of applied mycology, vol 2: humans, animals, and insects. Marcel Dekker, New York, pp 547–612

    Google Scholar 

  • Glazer I (2002) Survival biology. In: Gaugler R (ed) Entomopathogenic nematology. CABI, Wallingford, pp 169–187

    Google Scholar 

  • Goettel MS, St. Leger RJ, Bhairi S et al (1990) Pathogenicity and growth of Metarhizium anisopliae stably transformed to benomyl resistance. Curr Genet 17:129–132

    CAS  Google Scholar 

  • Goettel MS, Eilenberg J, Glare T (2010) Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert LI, Gill SS (eds) Insect control: biological and synthetic agents. Academic, Oxford, pp 387–431

    Google Scholar 

  • González JM Jr, Brown BJ, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A 79:6951–6955

    PubMed  PubMed Central  Google Scholar 

  • Grewal PS, Koppenhöfer AM, Choo HY (2005) Lawn, turfgrass and pasture applications. In: Grewal PS, Ehlers R-U, Shapiro-Ilan D (eds) Nematodes as biocontrol agents. CABI, Wallingford, pp 115–146

    Google Scholar 

  • Gröner A (1990) Safety to nontarget invertebrates of baculoviruses. In: Laird M, Lacey L, Davidson E (eds) Safety of microbial insecticides. CRC, Boca Raton, pp 135–147

    Google Scholar 

  • Haase S, Ferrelli L, Pidre ML et al (2013) Genetic engineering of baculoviruses. In: Romanowski V (ed) Current issues in molecular virology—viral genetics and biotechnological applications. InTech, Croatia, pp 79–111

    Google Scholar 

  • Hajek AE (1997a) Fungal and viral epizootics in gypsy moth (Lepidoptera: Lymantriidae) populations in Central New York. Biol Control 10:58–68

    Google Scholar 

  • Hajek AE (1997b) Ecology of terrestrial fungal entomopathogens. Adv Microb Ecol 15:193–249

    Google Scholar 

  • Hajek AE (1999) Pathology and epizootiology of Entomophaga maimaiga infections in forest Lepidoptera. Microbiol Mol Biol Rev 63:814–835

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hajek AE, St. Leger RJ (1994) Interactions between fungal pathogens and insect host. Annu Rev Entomol 39:293–322

    Google Scholar 

  • Harrison R, Hoover K (2012) Baculoviruses and other occluded insect viruses. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic, London, pp 73–131

    Google Scholar 

  • Hirao A, Ehlers R-U (2010) Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Appl Microbiol Biotechnol 85:507–515

    PubMed  CAS  Google Scholar 

  • Huber J (1986) Use of baculoviruses in pest management programs. In: Granados R, Federici B (eds) The biology of baculoviruses. Vol II: practical application for insect control. CRC, Boca Raton, pp 181–202

    Google Scholar 

  • Hywel-Jones NL, Gillespie AT (1990) Effect of temperature on spore germination in Metarhizium anisopliae and Beauveria bassiana. Mycol Res 94:389–392

    Google Scholar 

  • Inglis PW, Tigano MS, Valadares-Inglis MC (1999) Transformation of the entomopathogenic fungi, Paecilomyces fumosoroseus and Paecilomyces lilacinus (Deuteromycotina: Hyphomycetes) to benomyl resistance. Genet Mol Biol 22:119–123

    Google Scholar 

  • Janmaat AF, Myers JH (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Tricoplusia ni. Proc R Soc Lond B270:2263–2270

    Google Scholar 

  • Jansson RK, Lecrone SH, Gaugler R (1993) Field efficacy and persistence of entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) for control of sweetpotato weevil (Coleoptera: Apionidae) in southern Florida. J Econ Entomol 86:1055–1063

    Google Scholar 

  • Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. BioControl 55:159–185

    Google Scholar 

  • Jaronski ST (2012) Microbial control of invertebrate pests. In: Sundh I, Wilcks A, Goettel MS (eds) Beneficial microorganisms in agriculture, food and the environment: safety assessment and regulation. CABI, Wallingford, pp 72–95

    Google Scholar 

  • Jaronski S (2013) Mass production of entomopathogenic fungi—state of the art. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic, San Diego, pp 357–413

    Google Scholar 

  • Jaronski ST, Jackson MA (2012) Mass production of entomopathogenic Hypocreales. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, 2nd edn. Academic, New York, pp 255–284

    Google Scholar 

  • Jaros-Su J, Groden E, Zhang J (1999) Effects of selected fungicides and the timing of fungicide application in Beauveria bassiana-induced mortality of the Colorado potato beetle (Coleoptera: Chrysomelidae). Biol Control 15:259–269

    Google Scholar 

  • Jin X, Streett DA, Dunlap CA et al (2008) Application of hydrophilic–lipophilic balance (HLB) number to optimize a compatible non-ionic surfactant for dried aerial conidia of Beauveria bassiana. Biol Control 46:226–233

    CAS  Google Scholar 

  • Johnigk S-A, Ecke F, Poehling M et al (2004) Liquid culture mass production of biocontrol nematodes, Heterorhabditis bacteriophora (Nematoda: Rhabditida): improved timing of dauer juvenile inoculation. Appl Microbiol Biotechnol 64:651–658

    PubMed  CAS  Google Scholar 

  • Johnson VW, Pearson JF, Jackson TA (2001) Formulation of Serratia entomophila for biological control of grass grub. New Zealand plant protection, Proceedings of a conference, vol 54. Palmerston North, New Zealand, 14–16 Aug 2001, pp 125–127

    Google Scholar 

  • Kabaluk JT, Svircev AM, Goettel MS et al (eds) (2010) The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global, p 99. http://www.iobc-global.org/publications.html

  • Kaya HK (1985) Entomogenous nematodes for insect control in IPM systems. In: Hoy MA, Herzog DC (eds) Biological control in agricultural IPM systems. Academic, Orlando, pp 283–302

    Google Scholar 

  • Kaya HK (1990) Soil ecology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC, Boca Raton, pp 93–115

    Google Scholar 

  • Kaya HK (2002) Natural enemies and other antagonists. In: Gaugler R (ed) Entomopathogenic nematology. CABI, Wallingford, pp 189–203

    Google Scholar 

  • Kaya HK, Koppenhöfer AM (1996) Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Sci Technol 6:357–371

    Google Scholar 

  • Khan S, Guo L, Maimaiti Y et al (2012) Entomopathogenic fungi as microbial biocontrol agent. Mol Plant Breed 3:63–79

    Google Scholar 

  • Kim HS, Jung MH, Ahn S et al (2002) Structure elucidation of a new cyclic hexadepsipeptide from Beauveria felina. J Antibiot 55:598–601

    PubMed  CAS  Google Scholar 

  • Kirsch K, Schmutterer H (1988) Low efficacy of a Bacillusthuringiensis (Berl) formulation in controlling the diamondback moth, Plutella xylostella (L), in the Philippines. J Appl Entomol 105:249–255

    Google Scholar 

  • Klein MG (1990) Efficacy against soil-inhabiting insect pests. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC, Boca Raton, pp 195–214

    Google Scholar 

  • Klein MG (1993) Biological control of scarabs with entomopathogenic nematodes. In: Bedding R, Akhurst R, Kaya H (eds) Nematodes and the biological control of insect pests. CSIRO, East Melbourne, pp 49–58

    Google Scholar 

  • Koppenhöfer AM (2000) Nematodes. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer, Dordrecht, pp 283–301

    Google Scholar 

  • Koppenhöfer AM, Fuzy EM (2003) Steinernema scarabaei for the control of white grubs. Biol Control 28:47–59

    Google Scholar 

  • Koppenhöfer AM, Fuzy EM, Crocker R et al (2004) Pathogenicity of Heterorhabditis bacteriophora, Steinernema glaseri, and S. scarabaei (Rhabditida: Heterorhabditidae, Steinernematidae) against 12 white grub species (Coleoptera: Scarabaeidae). Biocontrol Sci Technol 14:87–92

    Google Scholar 

  • Krasnoff SB, Gibson DM, Belofsky GN et al (1996) New destruxins from the entomopathogenic fungus Aschersonia sp. J Nat Prod 59:485–489

    CAS  Google Scholar 

  • Lacey LA, Shapiro-Ilan DI (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu Rev Entomol 53:121–144

    PubMed  CAS  Google Scholar 

  • Lacey LA, Shapiro-Ilan DI, Glenn GM (2010) Post-application of anti-desiccant agents improves efficacy of entomopathogenic nematodes in formulated host cadavers or aqueous suspension against diapausing codling moth larvae (Lepidoptera: Tortricidae). Biocontrol Sci Technol 20:909–921

    Google Scholar 

  • Laird M, Lacey LA, Davidson EW (1990) Safety of microbial insecticides. CRC, Boca Raton

    Google Scholar 

  • Lasa R, Williams T, Caballero P (2008) Insecticidal properties and microbial contaminants in a Spodoptera exigua multiple nucleopolyhedrovirus (Baculoviridae) formulation stored at different temperatures. J Econ Entomol 101:42–49

    PubMed  CAS  Google Scholar 

  • Leemon DM, Jonsson NN (2008) Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. J Invertebr Pathol 97:40–49

    PubMed  CAS  Google Scholar 

  • Lewis EE, Clarke DJ (2012) Nematode parasites and entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic, San Diego, pp 395–443

    Google Scholar 

  • Lingg AJ, Donaldson MD (1981) Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. J Invertebr Pathol 38:191–200

    Google Scholar 

  • Liu CM, Huang SS, Tzeng YM (2004) Analysis of destruxins produced from Metarhizium anisopliae by capillary electrophoresis. J Chromatogr Sci 42:140–144

    PubMed  CAS  Google Scholar 

  • Llàcer E, Martinez de Altube MM, Jacas JA (2009) Evaluation of the efficacy of Steinernema carpocapsae in a chitosan formulation against the red palm weevil, Rhynchophorus ferrugineus, in Phoenix canariensis. BioControl 54:559–565

    Google Scholar 

  • Lomer CJ, Bateman RP, Johnson DL et al (2001) Biological control of locusts and grasshoppers. Annu Rev Entomol 46:667–702

    PubMed  CAS  Google Scholar 

  • Lord JC (2005) From Metchnikoff to Monsanto and beyond: the path of microbial control. J Invertebr Pathol 89:19–29

    PubMed  Google Scholar 

  • Maeda S (1989) Increased insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic hormone gene. Biochem Biophys Res Commun 165:1177–1183

    PubMed  CAS  Google Scholar 

  • McCoy CW, Samson RA, Boucias DG (1988) Entomogenous fungi. In: Ignoffo CM (ed) CRC handbook of natural pesticides. Microbial insecticides, part A. Entomogenous protozoa and fungi, vol 5. CRC, Boca Raton, pp 151–236

    Google Scholar 

  • McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–195

    PubMed  CAS  Google Scholar 

  • Miller LK (1997) Introduction to the Baculoviruses. In: Miller LK (ed) The Baculoviruses. Plenum, New York, pp 1–6

    Google Scholar 

  • Milner RJ (1989) Ecological considerations on the use of Metarhizium for control of soil-dwelling pests. In: Robertson LN, Allsopp PG (eds) Proceedings of a soil-invertebrate workshop. QDPI Indooroopilly, Queensland, pp 10–13

    Google Scholar 

  • Milner RJ, Lozano LB, Driver F et al (2003) A comparative study of two Mexican isolates with an Australian isolate of Metarhizium anisopliae var. acridum—strain characterisation, temperature profile and virulence for wingless grasshopper, Phaulacridium vittatum. BioControl 48:335–348

    CAS  Google Scholar 

  • Moscardi F, Morales L, Santos B (2002) The successful use of AgMNPV for the control of velvet bean caterpillar, Anticarsia gemmatalis, in soybean in Brazil. Proceedings of the VIII international on invertebrate pathology and microbial control and XXXV annual meeting of the Society for Invertebrate Pathology. Foz do Iguassu, Brazil, pp 86–91

    Google Scholar 

  • Moscardi F, Souza MLd, Castro MEBd et al (2011) Baculovirus pesticides: present state and future perspectives. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York, pp 415–445

    Google Scholar 

  • Mukuka J, Strauch O, Ehlers R-U (2010a) Variability in desiccation tolerance among different strains of the entomopathogenic nematode Heterorhabditis spp. Nematology 12:711–720

    Google Scholar 

  • Mukuka J, Strauch O, Hoppe C et al (2010b) Major improvement of heat and desiccation tolerance in Heterorhabditis bacteriophora through cross-breeding of tolerant strains and successive genetic selection. BioControl 55:511–521

    Google Scholar 

  • Müller-Kögler E (1965) Pilzkrankheiten bei Insekten. Anwendung zur biologischen Schädlingsbekämpfung und Grundlagen der Insektenmykologie. P. Parey, Berlin, p 444

    Google Scholar 

  • Nickle WR (1984) Plant and insect nematodes. Marcel Dekker, New York

    Google Scholar 

  • Nimkingrat P, Strauch O, Ehlers RU (2013) Hybridisation and genetic selection for improving desiccation tolerance of the entomopathogenic nematode Steinernema feltiae. Biocontrol Sci Technol 23:348–361

    Google Scholar 

  • Oliveira DP, Chaves BM, Loures EG (1981) Estudo comparativo da sobrevivencia de Metarhizium anisopliae (Metsch.) Sorokin em diferentes tipos de solo. Rev Theobroma 11:233–239

    Google Scholar 

  • O’Reilly DR, Miller LK (1991) Improvement of a baculovirus pesticide by deletion of the egt gene. Biotechnology 9:1086–1089

    Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE et al (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270

    PubMed  CAS  Google Scholar 

  • Parsa S, Ortiz V, Vega FE (2013) Establishing fungal entomopathogens as endophytes: towards endophytic biological control. J Vis Exp 74:e50360

    Google Scholar 

  • Pemsel M, Schwab S, Scheurer A et al (2010) Advanced PGSS process for the encapsulation of the biopesticide Cydia pomonella granulovirus. J Supercrit Fluids 53:174–178

    CAS  Google Scholar 

  • Perez EE, Lewis EE, Shapiro-Ilan DI (2003) Impact of host cadaver on survival and infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under desiccating conditions. J Invertebr Pathol 82:111–118

    PubMed  Google Scholar 

  • Poinar GO Jr (1979) Nematodes for biological control of insects. CRC, Boca Raton

    Google Scholar 

  • Poinar GO Jr (1989) Non-insect hosts for the entomogenous rhabditoid nematodes Neoaplectana (Steinernematidae) and Heterorhabditis (Heterorhabditidae). Rev Nématol 12:423–428

    Google Scholar 

  • Posada F, Vega FE (2005) Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia 97:1195–1200

    PubMed  Google Scholar 

  • Rajagopal R, Mohan S, Bhatnagar RK (2006) Direct infection of Spodoptera litura by Photorhabdus luminescens encapsulated in alginate beads. J Invertebr Pathol 93:50–53

    PubMed  CAS  Google Scholar 

  • Rashki M, Kharazi-pakdel A, Allahyari H et al (2009) Interactions among the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales), the parasitoid, Aphidius matricariae (Hymenoptera: Braconidae), and its host, Myzus persicae (Homoptera: Aphididae). Biol Control 50:324–328

    Google Scholar 

  • Rath AC, Anderson GC, Worledge D et al (1995) The effect of low temperatures on the virulence of Metarhizium anisopliae (DAT F-001) to the subterranean scarab, Adoryphorus couloni. J Invertebr Pathol 65:186–192

    Google Scholar 

  • Ravensberg WJ (2011) Critical factors in the successful commercialization of microbial pest control products. In: Ravensberg WJ (ed) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods (Progress in biological control). Springer, Dordrecht, pp 295–356

    Google Scholar 

  • Raymond B, Johnston PR, Nielsen-LeRoux C et al (2010) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18:189–194

    PubMed  CAS  Google Scholar 

  • Reddy GVP, Furlong MJ, Pell JK et al (1998) Zoophthora radicans infection inhibits the response to and production of sex pheromone in the diamondback moth (Note). J Invertebr Pathol 72:167–169

    PubMed  CAS  Google Scholar 

  • Reding ME, Zhu H, Derksen RC (2008) Drip-chemigation with imidacloprid and nematodes for control of scarab larvae in nursery crops. J Environ Hort 26:93–100

    CAS  Google Scholar 

  • Reid S, Chan L, van Oers MM (2013) Production of entomopathogenic viruses. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic, San Diego, pp 437–482

    Google Scholar 

  • Roberts DW, Campbell AS (1977) Stability of entomopathogenic fungi. Misc Publ Entomol Soc Am 10:19–76

    Google Scholar 

  • Roberts DW, Hajek AE (1992) Entomopathogenic fungi as bioinsecticides. In: Leatham GF (ed) Frontiers in industrial mycology. Chapman and Hall, New York, pp 144–159

    Google Scholar 

  • Robert PH, Riba G (1989) Toxic and repulsive effect of spray per os and systemic application of destruxin E to aphids. Mycopathologia 108:170–183

    Google Scholar 

  • Ruiu L (2013) Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 4:476–492

    Google Scholar 

  • Saik JE, Lacey LA, Lacey CM (1990) Safety of microbial insecticides to vertebrates—domestic animals and wildlife. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC, Boca Raton, pp 115–132

    Google Scholar 

  • Salamouny SE, Shapiro M, Ling KS et al (2009) Black tea and lignin as ultraviolet protectants for the beet armyworm nucleopolyhedrovirus. J Entomol Sci 44:50–58

    Google Scholar 

  • Samson RA, Evans HC, Latgé JP (1988) Atlas of Entomopathogenic Fungi. Springer, Berlin

    Google Scholar 

  • Sandhu SS, Kinghorn JR, Rajak RC et al (2001) Transformation system of Beauveria bassiana and Metarhizium anisopliae using nitrate reductase gene of Aspergillus nidulans. Indian J Exp Biol 39:650–653

    PubMed  CAS  Google Scholar 

  • Sansinenea E, Vázquez C, Ortiz A (2010) Genetic manipulation in Bacillus thuringiensis for strain improvement. Biotechnol Lett 32:1549–1557

    PubMed  CAS  Google Scholar 

  • Santi L, Silva LADe, Silva WOBd et al (2011) Virulence of the entomopathogenic fungus Metarhizium anisopliae using soybean oil formulation for control of the cotton stainer bug, Dysdercus peruvianus. World J Microbiol Biotechnol 27:2297–2303

    Google Scholar 

  • Santos PdS, Silva, Monteiro AC et al (2012) Selection of surfactant compounds to enhance the dispersion of Beauveria bassiana. Biocontrol Sci Technol 22:281–292

    Google Scholar 

  • Schroer S, Ehlers R-U (2005) Foliar application of the entomopathogenic nematode Steinernema carpocapsae for biological control of diamondback moth larvae (Plutella xylostella). Biol Control 33:81–86

    Google Scholar 

  • Screen SE, Hu G, St. Leger RJ (2001) Transformants of Metarhizium anisopliae sf. anisopliae overexpressing chitinase from Metarhizium anisopliae sf. acridum show early induction of native chitinase but are not altered in pathogenicity to Manduca sexta. J Invertebr Pathol 78:260–266

    PubMed  CAS  Google Scholar 

  • Seramis GmbH (2012) Seramis special growing granules. http://www.seramisuk.co.uk/technicaldata.html. Accessed 23 Dec 2012

  • Shah PA, Goettel MS (1999) Directory of microbial control products and services. Society for Invertebrate Pathology, Gainesville

    Google Scholar 

  • Shapiro M, Argauer R (1997) Components of the stilbene optical brightener tinopal LPW as enhancers for the gypsy moth (Lepidoptera: Lymantriidae) baculovirus. J Econ Entomol 90:899–904

    CAS  Google Scholar 

  • Shapiro DI, Glazer I (1996) Comparison of entomopathogenic nematode dispersal from infected hosts versus aqueous suspension. Environ Entomol 25:1455–1461

    Google Scholar 

  • Shapiro DI, Lewis EE (1999) Comparison of entomopathogenic nematode infectivity from infected hosts versus aqueous suspension. Environ Entomol 28:907–911

    Google Scholar 

  • Shapiro DI, Glazer I, Segal D (1996) Trait stability and fitness of the heat tolerant entomopathogenic nematode Heterorhabditis bacteriophora IS5 strain. Biol Control 6:238–244

    Google Scholar 

  • Shapiro DI, Glazer I, Segal D (1997) Genetic improvement of heat tolerance in Heterorhabditis bacteriophora through hybridization. Biol Control 8:153–159

    Google Scholar 

  • Shapiro-Ilan DI, Lewis EE, Behle RW et al (2001) Formulation of entomopathogenic nematode-infected cadavers. J Invertebr Pathol 78:17–23

    PubMed  CAS  Google Scholar 

  • Shapiro-Ilan DI, Gouge DH, Koppenhöfer AM (2002) Factors affecting commercial success: case studies in cotton, turf and citrus. In: Gaugler R (ed) Entomopathogenic nematology. CABI, Wallingford, pp 333–355

    Google Scholar 

  • Shapiro-Ilan DI, Lewis EE, Son Y et al (2003) Superior efficacy observed in entomopathogenic nematodes applied in infected-host cadavers compared with application in aqueous suspension. J Invertebr Pathol 83:270–272

    PubMed  Google Scholar 

  • Shapiro-Ilan DI, Stuart RJ, McCoy CW (2005) Targeted improvement of Steinernema carpocapsae for control of the pecan weevil, Curculio caryae (Horn) (Coleoptera: Curculionidae) through hybridization and bacterial transfer. Biol Control 34:215–221

    Google Scholar 

  • Shapiro-Ilan DI, Rojas MG, Morales-Ramos JA et al (2008) Effects of host nutrition on virulence and fitness of entomopathogenic nematodes: lipid and protein based supplements in Tenebrio molitor diets. J Nematol 40:13–19

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shapiro-Ilan DI, Cottrell TE, Mizell RF et al (2010) Efficacy of Steinernema carpocapsae for control of the lesser peachtree borer, Synanthedon pictipes: improved aboveground suppression with a novel gel application. Biol Control 54:23–28

    Google Scholar 

  • Shapiro-Ilan DI, Han R, Dolinksi C (2012a) Entomopathogenic nematode production and application technology. J Nematol 44:206–217

    Google Scholar 

  • Shapiro-Ilan DI, Bruck DJ, Lacey LA (2012b) Principles of epizootiology and microbial control. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic, San Diego, pp 29–72

    Google Scholar 

  • Shapiro-Ilan DI, Han R, Qiu X (2013) Production of entomopathogenic nematodes. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic, San Diego, pp 321–355

    Google Scholar 

  • Siegel JP (1997) Testing the pathogenicity and infectivity of entomopathogens to mammals. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic, San Diego, pp 325–336

    Google Scholar 

  • Siegel JP, Shadduck JA (1990) Safety of microbial insecticides to vertebrates—humans. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC, Boca Raton, pp 101–114

    Google Scholar 

  • Smits PH (1996) Post-application persistence of entomopathogenic nematodes. Biocontrol Sci Technol 6:379–387

    Google Scholar 

  • Snow FH (1893) Contagious diseases of the chinch bug. Second Ann. Rpt. Dir. Kans. Univ. Exp. Sta. for the year 1892

    Google Scholar 

  • St. Leger RJ (2001) Notification of intent to release a transgenic strain of Metarhizium anisopliae (document submitted by the University of Maryland as required by FIFRA). http://www.epa.gov/pesticides/biopesticides/other-docs/release_notification.htm. Accessed 16 Aug 2001

  • St. Leger RJ, Screen S (2001) Prospects for strain improvement of fungal pathogens of insects and weeds. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CABI, Wallingford, pp 219–237

    Google Scholar 

  • St. Leger RJ, Wang C (2009) Entomopathogenic fungi and the genomic era. In: Stock SP, Vandenberg J, Glazer I, Boemare N (eds) Insect pathogens: molecular approaches and techniques. CABI, Wallingford, pp 366–400

    Google Scholar 

  • St. Leger RJ, Frank DC, Roberts DW et al (1992) Molecular cloning and regulatory analysis of the cuticle-degrading-protease structural gene from the entomopathogenic fungus Metarhizium anisopliae. Eur J Biochem 204:991–1001

    PubMed  CAS  Google Scholar 

  • St. Leger RJ, Shimizu S, Joshi L et al (1995) Co-transformation of Metarhizium anisopliae by electroporation or using the gene gun to produce stable GUS transformants. FEMS Microbiol Lett 131:289–294

    CAS  Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ et al (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci U S A 93:6349–6354

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steinkraus DC, Boys GO, Bagwell RD et al (1998) Expansion of extension-based aphid fungus sampling service to Louisiana and Mississippi. Proc Beltwide Cotton Conf 2:1239–1242

    Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW et al (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:99–202

    Google Scholar 

  • Tanada Y, Kaya HK (1993) Insect pathology. Academic, San Diego

    Google Scholar 

  • Teera-Arunsiri A, Suphantharika M, Ketunuti U (2003) Preparation of spray-dried wettable powder formulations of Bacillus thuringiensis-based biopesticides. J Econ Entomol 96:292–299

    PubMed  Google Scholar 

  • Thomsen L, Eilenberg J (2000) Time-concentration mortality of Pieris brassicae (Lepidoptera: Pieridae) and Agrotis segetum (Lepidoptera: Noctuidae) larvae from different destruxins. Environ Entomol 29:1041–1047

    Google Scholar 

  • Townsend RJ, Ferguson CM, Proffitt JR et al (2004) Establishment of Serratia entomophila after application of a new formulation for grass grub control. New Zealand Plant Protection, vol 57. Proceedings of a conference, Hamilton, New Zealand, 10–12 Aug 2004, pp 310–313

    Google Scholar 

  • University of Arkansas (2013) Cotton aphid fungus sampling service. http://www.uark.edu/misc/aphid/project/project.htm. Accessed 6 Jan 2014

  • Upadhyay RK (2003) Advances in microbial control of insect pests. Kluwer, New York

    Google Scholar 

  • USDA APHIS (2014) Biological control organism permits. http://www.aphis.usda.gov/plant_health/permits/organism/biological_control/index.shtml. Accessed 13 Jan 2014

  • US EPA (2006) Biopesticide registration action document, Beauveria bassiana I-IF23 (PC Code 090305). US Environmental Protection Agency, Washington, DC. http://www.epa.gov/oppbppd1/biopesticides/ingredients/tech_docs/brad_090305.pdf. Accessed 13 Jan 2014

  • US EPA (2012) Chromobacterium subtsugae strain PRAA4-1T (016329) Fact Sheet. http://www.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-016329_20-Aug-12.pdf. Accessed 10 Jan 2014

  • van Frankenhuyzen K (2013) Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 114:76–85

    Google Scholar 

  • Walstad JD, Anderson RF, Stambaugh WJ (1970) Effects of environmental conditions on two species of muscardine fungi (Beauveria bassiana and Metarhizium anisopliae). J Invertebr Pathol 16:221–226

    Google Scholar 

  • Wang X, Grewal PS (2002) Rapid genetic deterioration of environmental tolerance and reproductive potential of an entomopathogenic nematode during laboratory maintenance. Biol Control 23:71–78

    CAS  Google Scholar 

  • Wang C, RJ St. Leger (2006) A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci U S A 103:6647–6652

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang C, RJ St. Leger (2007) The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115

    PubMed  CAS  Google Scholar 

  • Wang C, Hu G, RJ St. Leger (2005) Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet Biol 42:704–718

    PubMed  CAS  Google Scholar 

  • Welling M, Nachtigall G, Zimmermann G (1994) Metarhizium spp. isolates from Madagascar: morphology and effect of high temperature on growth and infectivity to the migratory locust, Locusta migratoria. Entomophaga 39:351–361

    Google Scholar 

  • Wennemann L, Cone WW, Wright LC et al (2003) Distribution patterns of entomopathogenic nematodes applied through drip irrigation systems. J Econ Entomol 96:287–291

    PubMed  CAS  Google Scholar 

  • Wikipedia (2013) Diatomaceous earth. Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Diatomaceous_earth&oldid=528917162. Accessed 26 Nov 2013

  • Wouts WM (1991) Steinernema (Neoaplectana) and Heterorhabditis species. In: Nickle WR (ed) Manual of agricultural nematology. Marcel Dekker, New York, pp 855–897

    Google Scholar 

  • Wraight SP, Carruthers RI (1999) Production, delivery, and use of mycoinsecticides for control of insect pests of field crops. In: Hall FR, Menn JJ (eds) Biopesticides: use and delivery. Humana, Totowa, pp 233–269

    Google Scholar 

  • Wraight SP, Jackson MA, de Lock SL (2001) Production, stabilization and formulation of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CABI, Wallingford, pp 253–287

    Google Scholar 

  • Wraight SP, Inglis GD, Goettel MS (2007) Fungi. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology, 2nd edn. Springer, Dordrecht, pp 223–248

    Google Scholar 

  • Wu S (2013) Efficacy of entomopathogenic nematodes and entomopathogenic fungi against masked chafer white grubs, Cyclocephala spp. (Coleoptera: Scarabaeidae). Ph. D. Dissertation, Virginia Polytechnic Institute and State University Blacksburg, VA

    Google Scholar 

  • Xavier-Santos S, Lopes RB, Faria M (2011) Emulsifiable oils protect Metarhizium robertsii and Metarhizium pingshaense conidia from imbibitional damage. Biol Control 59:261–267

    Google Scholar 

  • Young JM, Dunnill P, Pearce JD (2002) Separation characteristics of liquid nematode cultures and the design of recovery operations. Biotechnol Prog 18:29–35

    PubMed  CAS  Google Scholar 

  • Zhu H, Grewal PS, Reding ME (2011) Development of a desiccated cadaver delivery system to apply entomopathogenic nematodes for control of soil pests. Appl Eng Agric 27:317–324

    Google Scholar 

  • Zimmermann G (1986) Insect pathogenic fungi as pest control agents. In: Franz JM (ed) Progress in zoology: biological plant and health protection, vol 32. Gustav Fischer, New York, pp 217–231

    Google Scholar 

  • Zimmermann G (2007a) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920

    Google Scholar 

  • Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadi V.P. Reddy .

Editor information

Editors and Affiliations

Conclusion

Conclusion

Despite the high desirability of utilizing environmentally safe biopesticides , the commercial development and broad-scale use of these microbial biocontrol agents are still largely limited, due to high costs to manufacturers and end-users, short shelf-life, and unstable and inconsistent field efficacies. In addition, some highly pathogenic microbials, like virus and some nematode species (i.e. Steinernema scarabaei (Koppenhöfer and Fuzy 2003; Koppenhöfer et al. 2004)) , still have difficulty in massive scale production in vitro, although significant improvements have been achieved for the commercial production of microbial biopesticides in the past few decades. Future research should be directed to selection of more virulent strains or biotypes with broader spectra of target hosts via traditional or transgenic tools; improvement of technology in mass production to lower the costs and increase production capacity. Also, enhancement in product stability via formulations would be another direction for future research to optimize the field performance of entomopathogens. Finally, multi-categories of biopesticides with different mode of actions are desired to avoid the development of pest resistance and resurgence.

Acknowledgements

We acknowledge Dr. David I. Shapiro-Ilan from the USDA-ARS (Byron, GA) for technical review of the manuscript. This work was supported by FY 2011 USDA’s Pest Management Alternatives Program (PMAP), Special Research Grants Program (Award No 2011-34381-20051).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, S., Reddy, G., Jaronski, S. (2014). Advances in Microbial Insect Control in Horticultural Ecosystem. In: Nandwani, D. (eds) Sustainable Horticultural Systems. Sustainable Development and Biodiversity, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-06904-3_10

Download citation

Publish with us

Policies and ethics