Skip to main content

Modelling the Implications of Temperature on the Life Cycle of Aedes aegypti Mosquitoes

  • Chapter
  • First Online:
Ecological Modelling Applied to Entomology

Part of the book series: Entomology in Focus ((ENFO,volume 1))

Abstract

Dengue is an infectious disease that is transmitted by the Aedes aegypti mosquito. Each stage of the life cycle is influenced by climate variation. The transmission of the dengue virus can be related to increased mosquito survival due to rain and temperature conditions that are optimal for the mosquito’s maturation. The aim of this paper is to propose a mathematical model to study how temperature influences each stage of the mosquito’s life cycle dynamics by representing transitions and death rates as an explicit function of temperature. The model is thus able to show the influence of temperature on dengue transmission. It can also be used as an operational tool due to its simplicity regarding data requirements and computational effort. The model demonstrates that an expected increase in global temperature will influence the mosquito’s life cycle and, consequently, increase the incidence of dengue cases in areas that were previously free from the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Provided by NOAA/OAR/ESRL PSD, Boulder, Colorado USA http://www.cdc.noaa.gov/

References

  • Alto BW, Juliano SA (2001) Precipitation and temperature effects on populations of Aedes albopictus: implications for range expansion. J Med Entomol 38:646–656

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Andrews JF (1968) A mathematical model for the continuous culture of microorganism utilizing inhibitory substance. Biotechnol Bioeng 10:707–723

    Article  CAS  Google Scholar 

  • Antonini JCA, Silva EM, de Oliveira LFC et al (2009) Modelo matemático para estimativa da temperatura média diária do ar no Estado de Goiás. Pesq Agropec Bras Brasilia 44:331–338

    Article  Google Scholar 

  • Bermingham JR (2003) On exponential growth and mathematical purity: a reply to Bartlett. Popul Environ 25:71–73

    Article  Google Scholar 

  • Beserra EB, Freitas EM, Souza JT et al (2009) Ciclo de vida de Aedes (Stegomyia) aegypti (Diptera, Culicidae) em águas com diferentes características. Iheringia 99:281–285

    Google Scholar 

  • Bicout DJ, Sabatier P (2004) Mapping Rift Valley fever vectors and prevalence using rainfall variations. Vector Borne Zoonotic Dis 4:33–42

    Article  PubMed  CAS  Google Scholar 

  • Brière JF, Pracros P, le Roux AY, Pierre JS (1999) A novel rate model of temperature dependent development for arthropods. Environ Entomol 28:22–29

    Google Scholar 

  • Burattini MN, Chen M, Chow A et al (2008) Modeling the control strategies against dengue in Singapore. Epidemiol Infect 136:309–319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Calado DC, Navarro-Silva MA (2002) Avaliação da influência da temperatura sobre o desenvolvimento de Aedes albopictus. Rev Saude Publica 36:173–179

    Article  PubMed  Google Scholar 

  • Campbell-Lendrum D, Pruss-Ustun A, Corvalan C (2003) How much disease could climate change cause? In: McMichael A, Campbell-Leundrum D, Corvalan C et al (eds) Climate change and human health: risks and responses. WHO/WMO/UNEP, Geneva, p 133

    Google Scholar 

  • Chicone C (1999) Ordinary differential equations with applications, vol 34, Texts in applied mathematics. Springer, New York

    Google Scholar 

  • Choi GY, Choi JN, Kwon HJ (2005) The impact of high apparent temperature on the increase of summertime disease-related mortality in Seoul: 1991-2000. J Prev Med Public Health 38:283–290

    PubMed  Google Scholar 

  • Christopher SR (1960) Aedes aegypti (L.): the yellow fever mosquito. Cambridge University Press, London, 739 pp

    Google Scholar 

  • Coelho GE, Burattini MN, Teixeira MG et al (2008) Dynamics of the 2006/2007 dengue outbreak in Brazil. Mem Inst Oswaldo Cruz 103:535–539

    Article  PubMed  Google Scholar 

  • Coon JB, Naugle NW, McKenzie RD (1966) The investigation of double minimum potentials in molecules. J Mol Spectrosc 20:107–129

    Article  CAS  Google Scholar 

  • Costa FS, da Silva JJ, de Souza CM et al (2008) Dinâmica populacional de Aedes aegypts em área urbana de alta incidência de Dengue. Rev Soc Bras Med Trop 41:309–312

    Article  PubMed  Google Scholar 

  • Cuéllar CB (1969) A theoretical model of Anopheles gambiae population under challenge with eggs giving rise to sterile males. Bull World Health Org 40:205–212

    PubMed  PubMed Central  Google Scholar 

  • Dybiec B, Gudowska-Nowak E (2007) Quantifying noise induced effects in the generic double-well potential. Acta Phys Pol B 38:1759–1774

    CAS  Google Scholar 

  • Esteva L, Yang HM (2006) Control of dengue vector by sterile insect technique considering logistic recruitment. TEMA – Tendências em Matemática Aplicada e Computacional 7:259–268

    Google Scholar 

  • Fankhauser S, Tol RSJ (1997) The social cost of climate changes: the IPCC second assessment report and beyond. Mitig Adapt Strateg Glob Chang 1:385–403

    Article  Google Scholar 

  • Gadelha DP, Toda AT (1985) Biologia e comportamento do Aedes aegypti. Revista Brasileira de Malariologia e Doenças Tropicais 37:29–36

    CAS  Google Scholar 

  • Gama RA, Alves KC, Martins RF et al (2005) Efeito da densidade larval no tamanho de adultos de Aedes aegypti criados em condições de laboratório. Rev Soc Bras Med Trop 43:64–66

    Article  Google Scholar 

  • Gomes ACG, Gotlieb SLD, Marques CCA, de Paula MB, Marques GRAM (1995) Duration of larval and pupal development stages of Aedes albopictus in natural and artificial containers. Revista Saúde Pública 29:15–19

    Article  Google Scholar 

  • Guha-Sapir D, Schimmer B (2005) Dengue fever: new paradigms for a changing epidemiology. Emerg Themes Epidemiol 2:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Hales S, de Wet N, Maindonald J et al (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–834

    Article  PubMed  Google Scholar 

  • Hopp MJ, Foley JA (2001) Global-scale relationships between climate and the dengue fever vector, Aedes aegypti. Clim Changes 48:441–463

    Article  Google Scholar 

  • Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems (Encyclopaedia of mathematics and its applications). Cambridge University Press, Cambridge. ISBN 0521341876

    Book  Google Scholar 

  • Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97

    Article  Google Scholar 

  • Lakshmikantham V, Matrosov VM, Sivasudarm S (1991) Vector Lyapunov functions and stability analysis of nonlinear systems, Mathematics and its applications. Kluwer, Dordrecht/Boston

    Book  Google Scholar 

  • Li MY, Muldowney J (1993) On Bendixson’s criterion. J Differ Equ 106:27–39

    Article  Google Scholar 

  • Livdahl TP, Edgerly JS (1987) Egg hatching inhibition: field evidence for population regulation in a treehole mosquito. Ecol Entomol 12:395–399

    Article  Google Scholar 

  • Loetti MV, Burroni NE, Schweigmann N et al (2007) Effect of different thermal conditions on the pre-imaginal biology of Culex apicinus (Philipp, 1865). J Vector Ecol 32:06–111

    Google Scholar 

  • Löwenberg-Neto P, Navarro-Silva MA (2004) Development, longevity, gonothrophic cycle and oviposition of Aedes albopictus Skuse under cyclic temperature. Neotrop Entomol 33:29–33

    Article  Google Scholar 

  • Maidana NA, Yang HM (2007) A spatial model to describe the dengue propagation. Tendências em Matemática Aplicada e Computacional 8:83–93

    Google Scholar 

  • Massad E, Forattini OP (1998) Modeling the temperature sensitivity of some physiological parameters of epidemiological significance. Ecosyst Health 4:19–129

    Article  Google Scholar 

  • Massad E, Wilder-Smith A (2009) Risk estimates of dengue in travelers to dengue endemic areas using mathematical models. J Travel Med 16:191–193

    Article  PubMed  Google Scholar 

  • Monteiro LCC, de Souza JRB, Albuquerque CMR (2007) Eclosion rate, development and survivorship of Aedes albopictus (Skuse) (Diptera: Culicidae) under different water temperatures. Neotrop Entomol 36:966–971

    Article  PubMed  Google Scholar 

  • Muldowney JS (1990) Compound matrices and ordinary differential equations. Rocky Mt J Math 20:857–872

    Article  Google Scholar 

  • Ndiaye PI, Bicout DJ, Mondet B, Sabatier P (2006) Rainfall triggered dynamics of Aedes mosquito aggressiveness. J Theor Biol 243:222–229

    Article  PubMed  CAS  Google Scholar 

  • Padmanabha H, Lord CC, Lounibos LP (2011) Interactive effects of temperature and instar on starvation resistance in Aedes aegypti (L.) larvae. Med Vet Entomol 25:445–453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poletti P, Messeri G, Ajelli M, Vallorani R, Rizzo C et al (2011) Transmission potential of Chikungunya virus and control measures: the case of Italy. PLoS One 6(5):e18860. doi:10.1371/journal.pone.0018860

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rinne H (2009) The Weibull distribution: a handbook. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Schoolfield RM, Sharpe PJH, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction rate theory. J Theor Biol 88:719–731

    Article  PubMed  CAS  Google Scholar 

  • Seligman SJ (2008) Constancy and diversity in the flavivirus fusion peptide. Virol J 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Serpa LLN, Kakitani I, Voltolini JC (2008) Competição entre larvas de Aedes aegypti e Aedes albopictus em laboratório. Rev Soc Bras Med Trop 41:479–484

    Article  PubMed  Google Scholar 

  • Silver JB (2008) Mosquito ecology: field sampling methods, 3rd edn. Springer, Dordrecht, 1477 pp

    Book  Google Scholar 

  • Simmons CP, Farrar JJ, Chan NV, Wills B (2012) Dengue: current concepts. N Engl J Med 366:1423–1432

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Loreau M (2009) Dynamics of a three-species food chain model with adaptive traits. Chaos Solitons Fractals 41:2812–2819

    Article  Google Scholar 

  • Tan KB, Koh HL, Ismail AI Md et al (2008) Modeling mosquito population with temperature effects. In: International Conference on Environmental Research Technology- ICERT. The Environmental Division of the School of Industrial Technology, University Sains Malaysia, Penang, p 536

    Google Scholar 

  • Turell M, Rossi C, Bailey C (1985) Effect of extrinsic incubation temperature on the ability of Aedes taeniorhynchus and Culex pipiens to transmit Rift Valley fever virus. Am J Trop Med Hyg 34:1211–1218

    PubMed  CAS  Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313

    Article  Google Scholar 

  • Willmott CJ, Ackleson SG, Davis RE et al (1985) Statistic for the evaluation and comparison of models. J Geophys Res 90:8995–9005

    Article  Google Scholar 

  • Yang HM, Macoris MLG, Galvani KC et al (2007) Dinâmica da Transmissão da dengue com dados entomológicos temperatura-dependentes. Tendências em Matemática Aplicada e Computacional 8:159–168

    Google Scholar 

  • Yang HM, Macoris MLG, Galvani KC et al (2009a) Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137:1188–1202

    Article  PubMed  CAS  Google Scholar 

  • Yang HM, Macoris MLG, Galvani KC et al (2009b) Assessing the effects of temperature on dengue transmission. Epidemiol Infect 137:1179–1187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from LIM01-HCFMUSP, CNPq and FAPESP. M. R. thanks the CNPq and L. O. thanks FAPESP for fellowship awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Margon Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rossi, M.M., Ólivêr, L., Massad, E. (2014). Modelling the Implications of Temperature on the Life Cycle of Aedes aegypti Mosquitoes. In: Ferreira, C., Godoy, W. (eds) Ecological Modelling Applied to Entomology. Entomology in Focus, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-06877-0_4

Download citation

Publish with us

Policies and ethics