Skip to main content

Neural Networks in Modeling of CNC Milling of Moderate Slope Surfaces

  • Conference paper
  • First Online:
Modern Trends and Techniques in Computer Science

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 285))

Abstract

Computer numerical control (CNC) allows achieving a high degree of automation of machine tools by pre-programmed numerical commands. CNC milling process is widely used in industry for machining of complex parts. The need of a description of the CNC milling process is necessary for production of precise parts. This paper introduces artificial neural network based modeling, while the CNC milling of moderate slope shapes is studied. The developed neural models consist of two inputs and two outputs. The created neural models were experimentally tested on the real data. Then, the evaluation and comparison of all models were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouzakis, K.-D., Aichouh, P., Efstathiou, K.: Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. Int. J. Mach. Tools Manuf. 43, 499–514 (2003)

    Article  Google Scholar 

  2. Lukovics, I.: High speed milling of metal and polymer materials. Manuf. Technol. 4, 29–33 (2004)

    Google Scholar 

  3. Kasina, M., Vasilko, K.: Experimental verification of the relation between the surface roughness and the type of used tool coating. Manuf. Technol. 12, 27–30 (2012)

    Google Scholar 

  4. Miko, B., Beni B.: Study of surface roughness in case of Z-level finishing. In: International GTE Conference Manufacturing 2012, Budapest (2012)

    Google Scholar 

  5. Izol, P., Beno, J., Balazs, M.: Precision and surface roughness when free–form–surface milling. Manuf. Ind. Eng. 1, 70–73 (2011)

    Google Scholar 

  6. Sebelova, E., Chladil, J.: Tool wear and machinability of wood-based materials during machining process. Manuf. Technol. 13, 231–236 (2013)

    Google Scholar 

  7. Cerny, J., Ovsik, M., Bednarik, M., Mizera, A., Manas, D., Manas, M., Stanek, M.: Mod-ern methods of design of ergonomics parts. In: Recent Research Circuits Systems, vol. 7, pp. 321–324. Kos (2012)

    Google Scholar 

  8. Wu, C.-T.: Establishing a correlative model for improving NC machining process. Int. J. Mech. 5, 100–112 (2011)

    Google Scholar 

  9. Ghionea, I., Ghionea, A.: Simulation Techniques in CAD-CAM Processing by Milling of Surfaces on NC Machine-Tools. In: Advances in Production, Automation and Transportation Systems, vol. 1, pp. 135-140. Brasov (2013)

    Google Scholar 

  10. Dragoi, M.V.: Ball nose milling cutter radius compensation in Z axis for CNC. In: Proceedings of 8th WSEAS International Conference on Software Engineering Parallel and Distributed Systems, pp. 57–60. Cambridge (2009)

    Google Scholar 

  11. Zebala, W.: Milling optimization of difficult to machine alloys. Management 1, 59–70 (2010)

    Google Scholar 

  12. Zebala, W., Matras, A., Beno, J.: Optimization of free-form surface milling. Manuf. Eng. 3, 17–20 (2011)

    Google Scholar 

  13. Benardos, P.G., Vosniakos, G.C.: Predicting surface roughness in machining: a review. Int. J. Mach. Tool. Man. 43, 833–844 (2003)

    Article  Google Scholar 

  14. Cubonova, N.: Postprocessing of CL data in CAD/CAM system Edgecam using the constructor of postprocessors. Manuf. Technol. 13, 158–163 (2013)

    Google Scholar 

  15. Felho, C.: A method for calculation of theoretical roughness in face milling. In: Proceedings of 8th International Tools Conference, pp. 84–87. Zlin (2011)

    Google Scholar 

  16. Micietova, A., Neslusan, M., Cillikova, M.: Influence of surface geometry and structure after non-conventional methods of parting on the following milling operations. Manuf. Technol. 13, 199–204 (2013)

    Google Scholar 

  17. Quinsat, Y., Sabourin, L., Lartigue, C.: Surface topography in ball end milling process: description of a 3D surface roughness parameter. J. Mater. Process. Technol. 195, 135–143 (2008)

    Article  Google Scholar 

  18. Ho, W.-H., Tsai, J.-T., Lin, B.-T., Chou, J.-H.: Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Syst. Appl. 36, 3216–3222 (2009)

    Article  Google Scholar 

  19. Buj-Corral, I., Vivancos-Calvet, J., Dominguez-Fernandez, A.: Surface topography in ball-end milling processes as a function of feed per tooth and radial depth of cut. Int. J. Mach. Tools Manuf. 53, 151–159 (2012)

    Article  Google Scholar 

  20. Dhokia, V.G., Kumar, S., Vichare, P., Newman, S.T.: An intelligent approach for the prediction of surface roughness in ball-end machining of polypropylene. Rob. Comput. Integr. Manuf. 24, 835–842 (2008)

    Article  Google Scholar 

  21. Felho, C., Kundrak, J.: Characterization of topography of cut surface based on theoretical roughness indexes. Key Eng. Mater. 496, 194–199 (2011)

    Article  Google Scholar 

  22. Antoniadis, A., Savakis, C., Bilalis, N., Balouktsis, A.: Prediction of surface topomorphy and roughness in ball-end milling. Int. J. Adv. Manuf. Technol. 21, 965–971 (2003)

    Article  Google Scholar 

  23. Jung, T.-S., Yang, M.-Y., Lee, K.-J.: A new approach to analysing machined surfaces by ball-end milling, part I. Int. J. Adv. Manuf. Technol. 25, 833–840 (2005)

    Article  Google Scholar 

  24. Quintana, G., Ciurana, J., Ribatallada, J.: Surface roughness generation and material removal rate in ball end milling operations. Mater. Manuf. Process. 25, 386–398 (2010)

    Article  Google Scholar 

  25. Tandon, V., El-Mounayri, H., Kishawy, H.: NC end milling optimization using evolutionary computation. Int. J. Mach. Tools Manuf. 42, 595–605 (2002)

    Article  Google Scholar 

  26. Iliescu, M., Spanu, P., Rosu, M., Comanescu, B.: Simulation of cylindrical-face milling and modeling of resulting surface roughness when machining polymeric composites. In: Proceedings of 11th WSEAS International Conference on Automatic Control, Modelling and Simulation, pp. 219–224. Istanbul (2009)

    Google Scholar 

  27. Folea, M., Schlegel, D., Lupulescu, N., Parv, L.: Modeling surface roughness in high speed milling: cobalt based superalloy case study. In: Proceedings of 1st International Conference on Manufacturing Engineering Quality Production System, pp. 353–357. Brasov (2009)

    Google Scholar 

  28. Babur, O., Oktem, H., Kurtaran, H.: Optimum surface roughness in end milling Inconel 718 by coupling neural network model and genetic algorithm. Int. J. Adv. Manuf. Technol. 27, 234–241 (2005)

    Article  Google Scholar 

  29. Al-Zubaidi, S., Ghani, J.A., Haron, C.H.C.: Application of artificial neural networks in prediction tool life of PVD coated carbide when end milling of TI6aL4v alloy. Int. J. Mech. 6, 179–186 (2012)

    Google Scholar 

  30. Mankova, I., Vrabel, M., Kovac, P.: Artificial neural network application for surface roughness prediction when drilling nickel based alloy. Manuf. Technol. 13, 193–199 (2013)

    Google Scholar 

  31. Quintana, G., Garcia-Romeu, M.L., Ciurana, J.: Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. J. Intell. Manuf. 22, 607–617 (2011)

    Article  Google Scholar 

  32. Yegnanarayana, B.: Artificial neural networks. PHI Learning Pvt. Ltd., New Delhi (2004)

    Google Scholar 

  33. Karayel, D.: Prediction and control of surface roughness in CNC lathe using artificial neural network. J. Mater. Process. Technol. 209, 3125–3137 (2009)

    Article  Google Scholar 

  34. Correa, M., Bielza, C., Pamies-Teixeira, J.: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 36, 7270–7279 (2009)

    Article  Google Scholar 

  35. Oktem, H., Erzurumlu, T., Erzincanli, F.: Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Mater. Des. 27, 735–744 (2006)

    Article  Google Scholar 

  36. Venkatesan, D., Kannan, K., Saravanan, R.: A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Comput. Appl. 18, 135–140 (2009)

    Article  Google Scholar 

  37. Zeroudi, N., Fontaine, M.: Prediction of machined surface geometry based on analytical modelling of ball-end milling. Procedia CIRP 1, 108–113 (2012)

    Article  Google Scholar 

  38. El-Mounayri, H., Kishawy, H., Briceno, J.: Optimization of CNC ball end milling: a neural network-based model. J. Mater. Process. Technol. 166, 50–62 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Bilek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bilek, O., Samek, D. (2014). Neural Networks in Modeling of CNC Milling of Moderate Slope Surfaces. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds) Modern Trends and Techniques in Computer Science. Advances in Intelligent Systems and Computing, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-319-06740-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06740-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06739-1

  • Online ISBN: 978-3-319-06740-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics