Skip to main content

Function of Peroxisomes as a Cellular Source of Nitric Oxide and Other Reactive Nitrogen Species

  • Chapter
  • First Online:
Nitric Oxide in Plants: Metabolism and Role in Stress Physiology

Abstract

Peroxisomes are subcellular organelles bounded by a single membrane and devoid of DNA, with an essentially oxidative type of metabolism and are probably the major sites of intracellular H2O2 production. These organelles also generate superoxide radicals (O .−2 ) and besides catalase they have a complex battery of antioxidative enzymes. The existence of l-Arginine-dependent Nitric oxide synthase (NOS) activity and the generation of the reactive nitrogen species (RNS) nitric oxide (NO) have been demonstrated in plant peroxisomes. Besides NO, the presence in peroxisomes of the RNS S-nitrosoglutathione (GSNO) and the generation of peroxynitrite (ONOO) have also been reported. This implies that peroxisomes can function in plant cells as a source of the signaling molecules NO and GSNO, besides O .−2 and H2O2. As a result of the presence of NO and GSNO, and the production of the powerful oxidant and nitrating chemical ONOO, important post-translational modifications can take place in peroxisomes, such as S-nitrosylation and nitration of proteins which could have an impact on the peroxisomal and cellular metabolism of plants. The important physiological functions carried out by NO and other RNS in intra- and inter-cellular communication in different organisms evidence the key role displayed by peroxisomes in plant cellular metabolism as a source of these signaling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380

    Article  CAS  PubMed  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker A, Graham I (eds) (2002) Plant peroxisomes. Biochemistry, cell biology and biotechnological applications. Kluwer, Dordrecht

    Google Scholar 

  • Baker A, Graham IA, Holdsworth M et al (2006) Chewing the fat: β-oxidation in signalling and development. Trends Plant Sci 11:124–132

    Article  CAS  PubMed  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A et al (1999) Localization of nitric oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    Article  CAS  PubMed  Google Scholar 

  • Barroso JB, Valderrama R, Corpas FJ (2013) Immunolocalization of S-nitrosoglutathione, S-nitrosoglutathione reductase and tyrosine nitration in pea leaf organelles. Acta Physiol Plant 35:2635–2640

    Article  CAS  Google Scholar 

  • Baudouin E (2011) The language of nitric oxide signaling. Plant Biol (Stuttg) 13:233–242

    Article  CAS  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M et al (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boucher JL, Genet A, Vadon S et al (1992a) Formation of nitrogen oxides and citrulline upon oxidation of Nw-hydroxy-L-arginine by hemeproteins. Biochem Biophys Res Commun 184: 1158–1164

    Google Scholar 

  • Boucher JL, Genet A, Valdon S et al (1992b) Cytochrome P450 catalyzes the oxidation of Nw-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline. Biochem Biophys Res Commun 187: 880–886

    Google Scholar 

  • Caro A, Puntarulo S (1999) Nitric oxide generation by soybean embryonic axes, possible effect on mitochondrial function. Free Radic Res 31:S205–S212

    Article  CAS  PubMed  Google Scholar 

  • Chaki M (2007) Function of reactive nitrogen species in sunflower (Helianthus annuus) in response to abiotic and biotic stresses. PhD Thesis, University of Jaén, Spain

    Google Scholar 

  • Chaki M, Fernández-Ocaña AM, Valderrama R et al (2009) Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol 50:265–279

    Article  CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocaña AM et al (2011) High temperatura triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. Plant, Cell Environ 34:1803–1818

    Article  CAS  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 13:1380–1384

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, Sandalio LM et al (1999) Purification of catalase from pea leaf peroxisomes: identification of five different isoforms. Free Radic Res 31:235–242

    Article  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A et al (2004a) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136: 2722–2733

    Google Scholar 

  • Corpas FJ, Barroso JB, León AM et al (2004b) Peroxisomes as a source of nitric oxide. In: Magalhaes JR, Singh RP, Passos LP (eds) Nitric oxide signaling in higher plants, Studium Press, LLC, Houston, pp 111–129

    Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A et al (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:225–246

    Article  Google Scholar 

  • Corpas FJ, del Río LA, Barroso JB (2007) Need of biomarkers of nitrosative stress in plants. Trends Plant Sci 12:436–438

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Carreras A, Esteban FJ et al (2008) Localization of S-nitrosothiols and assay of nitric oxide synthase and S-nitrosoglutathione reductase activity in plants. Methods Enzymol 437:559–572

    Google Scholar 

  • Corpas FJ, Palma JM, del Río LA, Barroso JB (2009a) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184: 9–14

    Google Scholar 

  • Corpas FJ, Hayashi M, Mano S et al (2009b) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151: 2083–2094

    Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R et al (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxynitrite (ONOO-) is endogenously produced in Arabidopsis peroxisomes and is overproduced under cadmium stress. Ann Bot 113:87–96

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Palma JM, del Río LA (2013a) Peroxisomes as cell generators of reactive nitrogen species (RNS) signal molecules. In: del Río LA (ed) Peroxisomes and their key role in cellular signaling and metabolism. Subcellular Biochemistry 69. Springer, Dordrecht, pp 283–298

    Google Scholar 

  • Corpas FJ, Palma JM, del Río LA, Barroso JB (2013b) Protein tyrosine nitration in higher plants plants under natural and stress conditions. Front Plant Sci 4: 1–4

    Google Scholar 

  • Corpas FJ, Leterrier M, Begara-Morales JC et al (2013c) Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration. Biochim Biophys Acta 11:4981–4989

    Article  Google Scholar 

  • Costa A, Drago IO, Behera S et al (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca2+-dependent scavenging system. Plant J 62:760–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cueto M, Hernández-Perera O, Martín R et al (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    Article  CAS  PubMed  Google Scholar 

  • Dean JV, Harper JE (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88:389–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    Article  CAS  PubMed  Google Scholar 

  • Fahimi HD, Sies H (eds) (1987) Peroxisomes in biology and medicine. Springer-Verlag, Berlin

    Google Scholar 

  • Fewson CA, Nicholas DJD (1960) Utilization of nitric oxide by microorganisms and higher plants. Nature 188:794–796

    Article  CAS  PubMed  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G et al (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster MW, Stamler JS (2004) New insights into protein S-nitrosylation. Mitochondria as a model system. J Biol Chem 279:25891–25897

    Article  CAS  PubMed  Google Scholar 

  • Gas E, Flores-Pérez U, Sauret-Güeto S, Rodríguez-Concepción M (2009) Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell 21:18–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Kaiser WM (2010) Production and scavenging of nitric oxide by barley root mitochondria. Plant Cell Physiol 51:576–584

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  CAS  PubMed  Google Scholar 

  • Hancock JT (2012) NO synthase? Generation of nitric oxide in plants. Periodicum Biologorum 114:19–24

    Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radical Biol Med 33:774–797

    Article  CAS  Google Scholar 

  • Hu J, Baker A, Bartel B et al (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J, Sommers EM, Kim-Shapiro DB, King SB (2002) Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea. J Am Chem Soc 124:3473–3480

    Article  CAS  PubMed  Google Scholar 

  • Hung KT, Kao CH (2003) Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J Plant Physiol 160:871–879

    Article  CAS  PubMed  Google Scholar 

  • Islinger M, Grille S, Fahimi HD, Schrader M (2012) The peroxisome: an update on mysteries. Histochem Cell Biol 137:547–574

    Article  CAS  PubMed  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed Central  PubMed  Google Scholar 

  • Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF (1999) Mechanisms of protection of catalase by NADPH. Kinet Stoichiometry J Biol Chem 274:30451–30458

    Google Scholar 

  • Kissner R, Nauser T, Bugnon P et al (1997) Formation and properties of peroxynitrite as studied by laser flash photolysis, high pressure stopped flow technique, and pulse radiolysis. Chem Res Toxicol 10:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Klepper LA (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13:537–542

    Article  CAS  Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leshem YY (2000) Nitric oxide in plants: occurrence, function and use. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindermayr C, Durner J (2009) S-Nitrosylation in plants: pattern and function. J Proteomics 73:1–9

    Article  CAS  PubMed  Google Scholar 

  • Loughran PA, Stolz DB, Vodovotz Y et al (2005) Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. Proc Natl Acad Sci USA 102:13837–13842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lozano-Juste J, Colom-Moreno R, León J (2011) In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 62:3501–3517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mano S, Nakamori C, Hayashi M et al (2002) Distribution and characterization of peroxisomes in Arabidopsis by visualization with GFP: dynamic morphology and actin-dependent movement. Plant Cell Physiol 43:331–341

    Article  CAS  PubMed  Google Scholar 

  • Mano S, Nakamori C, Nito K et al (2006) The Arabidopsis pex12 and pex13 mutants are defective in both PTS1- and PTS2-dependent protein transport to peroxisomes. Plant J 47:604–618

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Ruiz A, Lamas S (2009) Two decades of new concepts in nitric oxide signaling: from the discovery of a gas messenger to the mediation of nonenzymatic posttranslational modifications. IUBMB Life 61:91–98

    Article  PubMed  Google Scholar 

  • Mathur J, Mathur N, Hülskamp M (2002) Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol 128:1031–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyake C, Schreiber U, Hormann H, Sano S, Asada K (1998) The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes. Plant Cell Physiol 39:821–829

    Article  CAS  Google Scholar 

  • Mur LAJ, Mandon J, Persijn S et al (2012) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5: pls052

    Google Scholar 

  • Neill S, Bright J, Desikan R et al (2008) Nitric oxide evolution and perception. J Exp Bot 59:25–35

    Article  CAS  PubMed  Google Scholar 

  • Nicholls P (1964) The reactions of azide with catalase and their significance. Biochem J 90:331–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ninnemann H, Maier J (1996) Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem Photobiol 64:393–398

    Article  CAS  PubMed  Google Scholar 

  • Noble DR, Swift HR, Williams DLH (1999) Nitric oxide release from S-nitrosoglutathione (GSNO). Chem Commun 18:2317–2318

    Article  Google Scholar 

  • Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM et al (2012) S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ et al (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Palmieri MC, Lindermayr C, Bauwe H et al (2010) Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation. Plant Physiol 152:1514–1528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Procházková D, Wilhelmová N (2011) Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. Nitric Oxide: Biol Chem 24:61–65

    Article  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46:550–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • del Río LA, Pastori GM, Palma JM et al (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    Article  PubMed Central  PubMed  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM et al (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81

    Article  PubMed  Google Scholar 

  • del Río LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ et al (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed Central  PubMed  Google Scholar 

  • del Río LA (2011) Peroxisomes as a source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    PubMed  Google Scholar 

  • del Río LA (ed) (2013) Peroxisomes and their key role in cellular signaling and metabolism. Subcellular biochemistry 69. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Rockel P, Strube F, Rockel A et al (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M (2007) Molecular mechanisms of response to cadmium in Pisum sativum L. plants: function of reactive oxygen and nitrogen species. PhD Thesis, University of Granada, Spain

    Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Sparkes I et al (2009) Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium. Free Radic Biol Med 47:1632–1639

    Article  PubMed  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Sandalio LM et al (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radic Res 31(Suppl):S25–S32

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M et al (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant, Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Campostrini N, Matte A et al (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1460

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM (2013) Protein S-nitrosylation in plants under abiotic stress: an overview. Front Plant Sci 4:1–6

    Article  Google Scholar 

  • Sano S, Miyake C, Mikami B, Asada K (1995) Molecular characterization of monodehydroascorbate radical reductase from cucumber highly expressed in Escherichia coli. J Biol Chem 270:21354–21361

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398

    Article  CAS  PubMed  Google Scholar 

  • Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Sci 167:839–847

    Article  CAS  Google Scholar 

  • Stamler JS, Lamas S, Fang FC (2001) Nitrosylation the prototypic redox based signalling mechanism. Cell 106:675–683

    Article  CAS  PubMed  Google Scholar 

  • Stöhr C, Strube F, Marx G et al (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  PubMed  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    Article  PubMed  Google Scholar 

  • Stolz DB, Zamora R, Vodovotz Y et al (2002) Peroxisomal localization of inducible nitric oxide synthase in hepatocytes. Hepatology 36:81–93

    Article  CAS  PubMed  Google Scholar 

  • Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    Article  PubMed  Google Scholar 

  • Tischner R, Galli M, Heimer YM et al (2007) Interference with the citrulline-based nitric oxide synthase assay by argininosuccinate lyase activity in Arabidopsis extracts. FEBS J 274:4238–4245

    Article  CAS  PubMed  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A et al (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    Article  CAS  PubMed  Google Scholar 

  • Waterham HR, Wanders RJA (2012) Metabolic functions and biogenesis of peroxisomes in health and disease. BBA Mol Basis Dis 1822:1325–1508

    Article  CAS  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant, Cell Environ 31:622–631

    Article  CAS  Google Scholar 

  • Wink DA, Hanbauer I, Grisham MB et al (1996) Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul 34:159–187

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Nat Acad Sci USA 99:4097–4102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zemojtel T, Fröhlich A, Palmieri MC et al (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ERDF-cofinanced grants from the Ministries of Science and Innovation, and Economy, and the Junta de Andalucía (Groups BIO-192 and BIO-286), Spain. Authors are indebted to Prof. Kozi Asada, Kyoto University, Japan, for supplying the pure recombinant enzyme monodehydroascorbate reductase (MDAR) for the assays of NO production by spin trapping EPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. del Río .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

del Río, L.A., Corpas, F.J., Barroso, J.B., López-Huertas, E., Palma, J.M. (2014). Function of Peroxisomes as a Cellular Source of Nitric Oxide and Other Reactive Nitrogen Species. In: Khan, M., Mobin, M., Mohammad, F., Corpas, F. (eds) Nitric Oxide in Plants: Metabolism and Role in Stress Physiology. Springer, Cham. https://doi.org/10.1007/978-3-319-06710-0_3

Download citation

Publish with us

Policies and ethics