Skip to main content

Points, Lines, Screws and Planes in Dual Quaternions Kinematics

  • Chapter
  • First Online:
Advances in Robot Kinematics

Abstract

Quaternions and dual quaternions are interesting elements which are being used to robot kinematics over five decades. They arise from Clifford algebras as many isomorphisms. In this chapter we offer representations to points, vectors, lines, screws and planes in dual quaternions coordinates, allowing a huge possibilities to solve problems, especially robot kinematics. No Clifford algebra is necessary, we will use only quaternions units. The displacement of the given elements are found in terms of dual quaternions algebra. For all these elements we must define the right dual quaternions conjugation and operations to handle with. Also, the principle of transference now is not sufficient, as we will explain into the chapter. Examples are presented to show the applicability of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, O.P.: Hamilton operators and dual-number-quaternions in spatial kinematics. Mech. Mach. Theor. 22(6), 569–575 (1987)

    Google Scholar 

  2. Bayro-Corrochano, E., Falcón, L.E.: Geometric algebra of points, lines, planes and spheres for computer vision and robotics. Robotica 23(6), 1469–8668 (2005). doi: 10.1017/S0263574705001657

    Google Scholar 

  3. Christoph, M.H., Yang, w.: In: LI, Z., Sit, W. (eds.) Compliant motion constraints. Singapore, World Scientific (2003)

    Google Scholar 

  4. Dooley, J.R., McCarthy, J.M.: On the geometric analysis of optimum trajectories for cooperating robots using dual quaternion coordinates. In: IEEE Transactions on Robotics and Automation, pp. 1031–1036 (1993)

    Google Scholar 

  5. Funda, J., Paul, R.P.: A computational analysis os screw transformations in robotics. IEEE Trans. Robot. Autom. 6(3), 382–388 (1990)

    Article  Google Scholar 

  6. Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  7. Martfnez, J.M.R.: The principle of transference: history, statement and proof. Mech. Mach. Theor. 28(1), 165–177 (1993)

    Article  Google Scholar 

  8. Radavelli, L., Simoni, R., Pieri, E.R.D., Martins, D.: A comparative study of the kinematics of robot manipulators by Denavit- Hartenberg and dual quaternion. Mecnica Computacional XXXI, 2833–2848 (2012)

    Google Scholar 

  9. Radavelli, L.: Análise cinemática direta de robôs manipuladores via álgebra de clifford e quatérnios. Dissertação, UFSC (2013)

    Google Scholar 

  10. Sahul, S., Biswall, B.B., Subudhi, B.: A novel method for representing robot kinematics using quaternion theory. In: IEEE Sponsored Conference on Computational Intelligence, Control and Computer Vision in Robotics and Automation (2008)

    Google Scholar 

  11. Selig, J.M.: Clifford algebra of points, lines and planes. Robotica 18, 545–546 (2000a)

    Google Scholar 

  12. Selig, J.M.: Geometric Fundamentals of Robotics. Springer, New York (2000b)

    Google Scholar 

  13. Shoham, M., Ben-Horin, P.: Application of grassmann-cayley algebra to geometrical interpretation of parallel robot singularities. Int. J. Rob. Res. 28, 127–141 (2009)

    Article  Google Scholar 

  14. Vince, J.: Geometric Algebra for Computer Graphics. Springer, London (2008)

    Google Scholar 

  15. Wang, J-Y., Liang, H-Z., Sun, Z-W., Wu, S-N., Zhang, S-H.: Relative motion coupled control based on dual quaternion. Aerosp. Sci. Technol. 25(1), 102–113 (2013)

    Google Scholar 

  16. Wang, X., Han, D., Yu, C., Zheng, Z.: The geometric structure of unit dual quaternion with application in kinematic control. J. Math. Anal. Appl. 389(2), 1352–1364 (2012)

    Google Scholar 

  17. Wang, X., Yu, C.: Unit dual quaternion-based feedback linearization tracking problem for attitude and position dynamics. Syst. Control Lett. 62(3), 225–233 (2013). doi: http://dx.doi.org/10.1016/j.sysconle.2012.11.019

    Google Scholar 

  18. Woo, L., Freudenstein, F.: Application of line geometry to theoretical kinematics and the kinematic analysis of mechanical systems. Mechanisms 5, 417–460 (1970)

    Article  Google Scholar 

  19. Yang, A.T., Freudenstein, F.: Application of dual-number quaternions to the analysis of the spatial mechanism. AMSE Trans. J. Appl. Mech. 86, 300–308 (1964)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Alberto Radavelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Radavelli, L.A., De Pieri, E.R., Martins, D., Simoni, R. (2014). Points, Lines, Screws and Planes in Dual Quaternions Kinematics. In: Lenarčič, J., Khatib, O. (eds) Advances in Robot Kinematics. Springer, Cham. https://doi.org/10.1007/978-3-319-06698-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06698-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06697-4

  • Online ISBN: 978-3-319-06698-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics