Skip to main content

Plant Peroxisomal ABC Transporters: Flexible and Unusual

  • Chapter
  • First Online:
Plant ABC Transporters

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 22))

Abstract

ABC transporters of subfamily D mediate import of substrates for β-oxidation into peroxisomes. Whilst mammals possess three peroxisomal ABCD proteins which homodimerise to form transporters with distinct substrate specificities, Baker’s yeast has a single transporter formed by heterodimerisation, which imports long-chain fatty acyl CoAs. Plants have a single-fused heterodimer transporter that exhibits broad substrate specificity, reflecting the wide range of β-oxidation substrates processed by plants. The fusion appears to have occurred early in the evolution of land plants and was followed by an early duplication event in the monocot lineage. Plant ABCD proteins function in all stages of the life cycle and their physiological roles reflect the ability to transport diverse substrates including saturated and unsaturated fatty acids and aromatic compounds such as precursors of hormones and secondary metabolites. Recent work suggests that transport of CoA substrates involves their cleavage and re-esterification within the peroxisome, thus interaction with appropriate acyl adenylate-activating enzymes potentially provides a mechanism for regulating entry of different substrates into β-oxidation. The mechanism of ABCD transporter targeting is broadly conserved across kingdoms but evidence suggests the regulation of protein turnover differs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ABC:

ATP-binding cassette

ABCD:

ABC transporter, subfamily D

ALDP:

Adrenoleukodystrophy protein

ALDR:

Adrenoleukodystrophy-related protein

CoA:

Coenzyme A

CTS:

Comatose

2,4-DB:

2,4-Dichlorophenoxybutyrate

ER:

Endoplasmic reticulum

IAA:

Indole acetic acid

IBA:

Indole butyric acid

JA:

Jasmonic acid

LACS:

Long-chain fatty acyl CoA synthetase

LCFA:

Long-chain fatty acid

MCFA:

Medium chain fatty acid

NBD:

Nucleotide-binding domain

OPDA:

12-Oxophytodienoic acid

PMP:

Peroxisomal membrane protein

PMP69:

69 kDa PMP

PMP70:

70 kDa PMP

TAG:

Triacylglycerol

TMD:

Transmembrane domain

VLACS:

Very long-chain fatty acyl CoA synthetase

VLCFA:

Very long-chain fatty acid

X-ALD:

X-linked adrenoleukodystrophy

References

  • Antonenkov VD, Hiltunen JK (2012) Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta 1822:1374–1386

    CAS  PubMed  Google Scholar 

  • Arai Y, Hayashi M, Nishimura M (2008) Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Plant Cell Physiol 49:526–539

    CAS  PubMed  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    CAS  PubMed  Google Scholar 

  • Boisnard S, Espagne E, Zickler D, Bourdais A, Riquet AL, Berteaux-Lecellier V (2009) Peroxisomal ABC transporters and beta-oxidation during the life cycle of the filamentous fungus Podospora anserina. Fungal Genet Biol 46:55–66

    CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    CAS  PubMed  Google Scholar 

  • Bussell JD, Reichelt M, Wiszniewski AA, Gershenzon J, Smith SM (2013) Peroxisomal ABC transporter CTS and the multifunctional protein AIM1 are required for production of benzoylated metabolites in Arabidopsis seeds. Plant Physiol Nov 19. [Epub ahead of print]

  • Bussell JD, Reichelt M, Wiszniewski AA, Gershenzon J, Smith SM (2014) Peroxisomal ABC transporter CTS and the multifunctional protein AIM1 are required for production of benzoylated metabolites in Arabidopsis seeds. Plant Physiol 164:48–54

    CAS  PubMed  Google Scholar 

  • Cantley JL, Yoshimura T, Camporez JP, Zhang D, Jornayvaz FR, Kumashiro N, Guebre-Egziabher F, Jurczak MJ, Kahn M, Guigni BA, Serr J, Hankin J, Murphy RC, Cline GW, Bhanot S, Manchem VP, Brown JM, Samuel VT, Shulman GI (2013) CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc Natl Acad Sci U S A 110:1869–1874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carrera E, Holman T, Medhurst A, Peer W, Schmuths H, Footitt S, Theodoulou FL, Holdsworth MJ (2007) Gene expression profiling reveals defined functions of the ABC transporter COMATOSE late in phase II of germination. Plant Physiol 143:1669–1679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coelho D, Kim JC, Miousse IR, Fung S, du Moulin M, Buers I, Suormala T, Burda P, Frapolli M, Stucki M, Nürnberg P, Thiele H, Robenek H, Höhne W, Longo N, Pasquali M, Mengel E, Watkins D, Shoubridge EA, Majewski J, Rosenblatt DS, Fowler B, Rutsch F, Baumgartner MR (2012) Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet 44:1152–1155

    CAS  PubMed  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    CAS  PubMed  Google Scholar 

  • Dave A, Hernández ML, He Z, Andriotis VM, Vaistij FE, Larson TR, Graham IA (2011) 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23:583–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185

    CAS  PubMed  Google Scholar 

  • De Marcos Lousa C, van Roermund CW, Postis VLG, Dietrich D, Kerr ID, Wanders RJA, Baldwin SA, Baker A, Theodoulou FL (2013) Intrinsic acyl-CoA thioesterase activity of a peroxisomal ABC transporter is required for transport and metabolism of fatty acids. Proc Natl Acad Sci U S A 110:1279–1284

    PubMed Central  PubMed  Google Scholar 

  • Dietrich D, Schmuths H, De Marcos LC, Baldwin JM, Baldwin SA, Baker A, Theodoulou FL, Holdsworth MJ (2009) Mutations in the Arabidopsis peroxisomal ABC transporter COMATOSE allow differentiation between multiple functions in planta: insights from an allelic series. Mol Biol Cell 20:530–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J 69:978–995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan J, Quan S, Orth T, Awai C, Chory J, Hu J (2005) The Arabidopsis PEX12 gene is required for peroxisome biogenesis and is essential for development. Plant Physiol 139:231–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Footitt S, Slocombe SP, Larner V, Kurup S, Wu Y, Larson T, Graham I, Baker A, Holdsworth M (2002) Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J 21:2912–2922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Footitt S, Marquez J, Schmuths H, Baker A, Theodoulou FL, Holdsworth M (2006) Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. J Exp Bot 57:2805–2814

    CAS  PubMed  Google Scholar 

  • Footitt S, Dietrich D, Fait A, Fernie A, Holdsworth MJ, Baker A, Theodoulou FL (2007) The COMATOSE ABC transporter is required for full fertility in Arabidopsis. Plant Physiol 144:1467–1480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiki Y, Rachubinski RA, Lazarow PB (1984) Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc Natl Acad Sci U S A 81:7127–7131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J (2004) Peroxisomal Acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell 16:394–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Genin EC, Geillon F, Gondcaille C, Athias A, Gambert P, Trompier D, Savary S (2011) Substrate specificity overlap and interaction between adrenoleukodystrophy protein (ALDP/ABCD1) and adrenoleukodystrophy-related protein (ALDRP/ABCD2). J Biol Chem 286:8075–8084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Girzalsky W, Saffian D, Erdmann R (2010) Peroxisomal protein translocation. Biochim Biophys Acta 1803:724–731

    CAS  PubMed  Google Scholar 

  • Guimarães CP, Domingues P, Aubourg P, Fouquet F, Pujol A, Jimenez-Sanchez G, Sá-Miranda C, Azevedo JE (2004) Mouse liver PMP70 and ALDP: homomeric interactions prevail in vivo. Biochim Biophys Acta 1689:235–243

    PubMed  Google Scholar 

  • Halbach A, Lorenzen S, Landgraf C, Volkmer-Engert R, Erdmann R, Rottensteiner H (2005) Function of the PEX19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast. PMP targeting is evolutionarily conserved. J Biol Chem 280:21176–21182

    CAS  PubMed  Google Scholar 

  • Hayashi M, Nito K, Takei-Hoshi R, Yagi M, Kondo M, Suenaga A, Yamaya T, Nishimura M (2002) Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid beta-oxidation. Plant Cell Physiol 43:1–11

    CAS  PubMed  Google Scholar 

  • Hettema EH, van Roermund CW, Distel B, van den Berg M, Vilela C, Rodrigues-Pousada C, Wanders RJ, Tabak HF (1996) The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae. EMBO J 15:3813–3822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hillebrand M, Gersting SW, Lotz-Havla AS, Schäfer A, Rosewich H, Valerius O, Muntau AC, Gärtner J (2012) Identification of a new fatty acid synthesis-transport machinery at the peroxisomal membrane. J Biol Chem 287:210–221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hooks MA, Turner JE, Murphy EC, Johnston KA, Burr S, Jarosławski S (2007) The Arabidopsis ALDP protein homologue COMATOSE is instrumental in peroxisomal acetate metabolism. Biochem J 406:399–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hooks KB, Turner JE, Graham IA, Runions J, Hooks MA (2012) GFP-tagging of Arabidopsis acyl-activating enzymes raises the issue of peroxisome-chloroplast import competition versus dual localization. J Plant Physiol 169:1631–1638

    CAS  PubMed  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunt MC, Alexson SE (2002) The role acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog Lipid Res 41:99–130

    CAS  PubMed  Google Scholar 

  • Iwashita S, Tsuchida M, Tsukuda M, Yamashita Y, Emi Y, Kida Y, Komori M, Kashiwayama Y, Imanaka T, Sakaguchi M (2010) Multiple organelle-targeting signals in the N-terminal portion of peroxisomal membrane protein PMP70. J Biochem 147:581–590

    CAS  PubMed  Google Scholar 

  • James CN, Horn PJ, Case CR, Gidda SK, Zhang D, Mullen RT, Dyer JM, Anderson RG, Chapman KD (2010) Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipid droplet accumulation in plants. Proc Natl Acad Sci U S A 107:17833–17838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanai M, Nishimura M, Hayashi M (2010) A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5. Plant J 62:936–947

    CAS  PubMed  Google Scholar 

  • Kashiwayama Y, Asahina K, Shibata H, Morita M, Muntau AC, Roscher AA, Wanders RJ, Shimozawa N, Sakaguchi M, Kato H, Imanaka T (2005) Role of Pex19p in the targeting of PMP70 to peroxisome. Biochim Biophys Acta 1746:116–128

    CAS  PubMed  Google Scholar 

  • Kashiwayama Y, Asahina K, Morita M, Imanaka T (2007) Hydrophobic regions adjacent to transmembrane domains 1 and 5 are important for the targeting of the 70-kDa peroxisomal membrane protein. J Biol Chem 282:33831–33844

    CAS  PubMed  Google Scholar 

  • Kashiwayama Y, Seki M, Yasui A, Murasaki Y, Morita M, Yamashita Y, Sakaguchi M, Tanaka Y, Imanaka T (2009) 70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins. Exp Cell Res 315:190–205

    CAS  PubMed  Google Scholar 

  • Kelly AA, Quettier AL, Shaw E, Eastmond PJ (2011) Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol 157:866–875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kemp S, Theodoulou FL, Wanders RJA (2011) Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J Pharmacol 164:1753–1766

    PubMed Central  PubMed  Google Scholar 

  • Kemp S, Berger J, Aubourg P (2012) X-linked adrenoleukodystrophy: clinical, metabolic, genetic and pathophysiological aspects. Biochim Biophys Acta 1822:1465–1474

    CAS  PubMed  Google Scholar 

  • Kunz HH, Scharnewski M, Feussner K, Feussner I, Flügge UI, Fulda M, Gierth M (2009a) The ABC transporter PXA1 and peroxisomal beta-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness. Plant Cell 21:2733–2749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kunz HH, Scharnewski M, von Berlepsch S, Shahi S, Fulda M, Flügge UI, Gierth M (2009b) Nocturnal energy demand in plants: insights from studying mutants impaired in β-oxidation. Plant Signal Behav 5:842–844

    Google Scholar 

  • Lazo O, Contreras M, Hashmi M, Stanley W, Irazu C, Singh I (1988) Peroxisomal lignoceroyl-CoA ligase deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy. Proc Natl Acad Sci U S A 85:7647–7651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linka N, Theodoulou FL (2013) Metabolite transporters of the plant peroxisomal membrane: known and unknown. Subcell Biochem 69:169–194

    CAS  PubMed  Google Scholar 

  • Linka N, Theodoulou FL, Haslam RP, Napier JA, Linka M, Neuhaus HE, Weber APM (2008) Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. Plant Cell 20:3241–3257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183

    CAS  PubMed  Google Scholar 

  • Ma C, Agrawal G, Subramani S (2011) Peroxisome assembly: matrix and membrane protein biogeneis. J Cell Biol 193:7–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marbeuf-Gueye C, Stierle V, Sudwan P, Salerno M, Garnier-Suillerot A (2007) Perturbation of membrane microdomains in GLC4 multidrug-resistant lung cancer cells- modification of ABCC1 (MRP1) localization and functionality. FEBS J 274:1470–1480

    CAS  PubMed  Google Scholar 

  • Mendiondo GM, Medhurst A, van Roermund CW, Zhang A, Devonshire J, Scholefield D, Fernández J, Axcell B, Ramsay L, Waterham HR, Waugh R, Theodoulou FL, Holdsworth MJ (2014) Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation. J Exp Bot (in press)

    Google Scholar 

  • Moody JE, Millen L, Binns D, Hunt JF, Thomas PJ (2002) Cooperative, ATP-dependent association of nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J Biol Chem 277:21111–21114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moraes TF, Reithmeier RAF (2012) Membrane transport metabolons. Biochim Biophs Acta 1818:2687–2706

    CAS  Google Scholar 

  • Morita M, Imanaka T (2012) Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta 1822:1387–1396

    CAS  PubMed  Google Scholar 

  • Mosser J, Douar AM, Sarde CO, Kioschis P, Feil R, Moser H, Poustka AM, Mandel JL, Aubourg P (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361:726–730

    CAS  PubMed  Google Scholar 

  • Motley AM, Hettema EH (2007) Yeast peroxisomes multiply by growth and division. J Cell Biol 178:399–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nito K, Kamigaki A, Kondo M, Hayashi M, Nishimura M (2007) Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. Plant Cell Physiol 48:763–74

    CAS  PubMed  Google Scholar 

  • Nuttall JM, Motley A, Hettema EH (2011) Peroxisome biogenesis: recent advances. Curr Opin Cell Biol 23:421–426

    CAS  PubMed  Google Scholar 

  • Nyathi Y, De Marcos LC, van Roermund CW, Wanders RJA, Baldwin SA, Theodoulou FL, Baker A (2010) The Arabidopsis peroxisomal ABC transporter, COMATOSE, complements the Saccharomyces cerevisiae pxa1 pxa2Δ double mutant for metabolism of long chain fatty acids and exhibits fatty acyl-CoA stimulated ATPase activity. J Biol Chem 285:29892–29902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nyathi N, Zhang X, Baldwin J, Bernhardt K, Johnson B, Baldwin SA, Theodoulou FL, Baker A (2012) Pseudo half-molecules of the ABC transporter, COMATOSE, bind Pex19 and target to peroxisomes independently but are both required for activity. FEBS Lett 586:2280–2286

    CAS  PubMed  Google Scholar 

  • Orsi CH, Tanksley SD (2009) Natural variation in an ABC transporter gene associated with seed size evolution in tomato species. PLoS Genet 5:e1000347

    PubMed Central  PubMed  Google Scholar 

  • Park S, Gidda SK, James CN, Horn PJ, Khuu N, Seay DC, Keereetaweep J, Chapman KD, Mullen RT, Dyer JM (2013) The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis. Plant Cell 25:1726–1739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinfield-Wells H, Rylott EL, Gilday AD, Graham S, Job K, Larson TR, Graham IA (2005) Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J 43:861–872

    CAS  PubMed  Google Scholar 

  • Pollock NL, McDevitt CA, Collins R, Niesten PH, Prince S, Kerr ID, Ford RC, Callaghan R (2014) Improving the stability and function of purified ABCB1 and ABCA4: The influence of membrane lipids. Biochim Biophys Acta 1838:134–147

    CAS  PubMed  Google Scholar 

  • Procko E, O’Mara ML, Bennett WF, Tieleman DP, Gaudet R (2009) The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J 23:1287–1302

    CAS  PubMed  Google Scholar 

  • Qualley AV, Widhalm JR, Adebesin F, Kish CM, Dudareva N (2012) Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proc Natl Acad Sci U S A 109:16383–16388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reumann S (2000) The structural properties of plant peroxisomes and their metabolic significance. Biol Chem 381:639–648

    CAS  PubMed  Google Scholar 

  • Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth W, Jahn O (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rottensteiner H, Kramer A, Lorenzen S, Stein K, Landgraf C, Volkmer-Engert R, Erdmann R (2004) Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals. Mol Biol Cell 15:3406–3417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Russell L (1998) Isolation and analysis of mutants in Arabidopsis thaliana disrupted in the transition between dormancy and germination. PhD thesis, University of Bristol

    Google Scholar 

  • Russell L, Larner V, Kurup S, Bougourd S, Holdsworth M (2000) The Arabidopsis COMATOSE locus regulates germination potential. Development 127:3759–3767

    CAS  PubMed  Google Scholar 

  • Saveria T, Halbach A, Erdmann R, Volkmer-Engert R, Landgraf C, Rottensteiner H, Parsons M (2007) Conservation of PEX19-binding motifs required for protein targeting to mammalian peroxisomal and trypanosome glycosomal membranes. Eukaryot Cell 6:1439–1449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlüter A, Real-Chicharro A, Gabaldón T, Sánchez-Jiménez F, Pujol A (2010) PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nucleic Acids Res 38:D800–5

    PubMed Central  PubMed  Google Scholar 

  • Shani N, Valle D (1996) A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters. Proc Natl Acad Sci U S A 93:11901–11906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shockey J, Browse J (2011) Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. Plant J 66:143–160

    CAS  PubMed  Google Scholar 

  • Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA (2009) Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J 7:694–703

    CAS  PubMed  Google Scholar 

  • Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF (2002) ATP binding to the motor domain of an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10:139–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sparkes IA, Brandizzi F, Slocombe SP, El-Shami M, Hawes C, Baker A (2003) An Arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis. Plant Physiol 133:1809–1819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storch CH, Ehehalt R, Haefeli WE, Weiss J (2007) Localization of the human breast cancer resistance protein (BCRP/ABCG2) in lipid rafts/caveolae and modulation of its activity by cholesterol in vitro. J Pharmacol Exp Ther 323:257–264

    CAS  PubMed  Google Scholar 

  • Strader LC, Culler AH, Cohen JD, Bartel B (2010) Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Plant Physiol 153:1577–1586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Wheeler DL, Christensen SE, Berens JC, Cohen JD, Rampey RA, Bartel B (2011) Multiple facets of Arabidopsis seedling development require indole-3-butyric acid-derived auxin. Plant Cell 23:984–999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi N, Morita M, Maeda T, Harayama Y, Shimozawa N, Suzuki Y, Furuya H, Sato R, Kashiwayama Y, Imanaka T (2007) Adrenoleukodystrophy: subcellular localization and degradation of adrenoleukodystrophy protein (ALDP/ABCD1) with naturally occurring missense mutations. J Neurochem 101:1632–1643

    CAS  PubMed  Google Scholar 

  • Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Telbisz A, Müller M, Ozvegy-Laczka C, Homolya L, Szente L, Varadi A, Sarkadi B (2007) Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter. Biochim Biophys Acta 1768:2698–2713

    CAS  PubMed  Google Scholar 

  • Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ABC transporter mutants: implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theodoulou FL, Holdsworth M, Baker A (2006) Peroxisomal ABC transporters. FEBS Lett 580:1139–1155

    CAS  PubMed  Google Scholar 

  • Theodoulou FL, Zhang X, De Marcos LC, Nyathi Y, Baker A (2011) Peroxisomal transport systems: roles in signaling and metabolism. In: Geisler M, Venema K (eds) Transporters and pumps in plant signaling, vol 7, Signaling and communication in plants. Springer, Berlin, Heidelberg, pp 327–351

    Google Scholar 

  • Theodoulou FL, Bernhardt K, Linka N, Baker A (2013) Peroxisome membrane proteins: multiple trafficking routes and multiple functions? Biochem J 451:345–352

    CAS  PubMed  Google Scholar 

  • Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM (2007) Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol 44:531–542

    CAS  PubMed  Google Scholar 

  • Troost J, Lindenmaier H, Haefeli WE, Weiss J (2004) Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells. Mol Pharmacol 66:1332–1339

    CAS  PubMed  Google Scholar 

  • Turner JE, Greville K, Murphy EC, Hooks MA (2005) Characterization of Arabidopsis fluoroacetate-resistant mutants reveals the principal mechanism of acetate activation for entry into the glyoxylate cycle. J Biol Chem 280:2780–2787

    CAS  PubMed  Google Scholar 

  • Tyra HM, Linka M, Weber AP, Bhattacharya D (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212

    PubMed Central  PubMed  Google Scholar 

  • van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge UI, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    PubMed Central  PubMed  Google Scholar 

  • van der Zand A, Braakman I, Tabak HF (2010) Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol Biol Cell 21:2057–2065

    PubMed Central  PubMed  Google Scholar 

  • van der Zand A, Gent J, Braakman I, Tabak HF (2012) Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 149:397–409

    PubMed  Google Scholar 

  • van Roermund CW, Visser WF, Ijlst L, van Cruchten A, Boek M, Kulik W, Waterham HR, Wanders RJ (2008) The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J 22:4201–4208

    PubMed  Google Scholar 

  • van Roermund CW, Visser WF, Ijlst L, Waterham HR, Wanders RJ (2011) Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid β-oxidation. Biochim Biophys Acta 1811:148–152

    PubMed  Google Scholar 

  • van Roermund CW, Ijlst L, Majczak W, Waterham HR, Folkerts H, Wanders RJ, Hellingwerf KJ (2012) Peroxisomal fatty acid uptake mechanism in Saccharomyces cerevisiae. J Biol Chem 287:20144–20153

    PubMed Central  PubMed  Google Scholar 

  • van Roermund CW, Ijlst L, Wagemans T, Wanders RJ, Waterham HR (2013) A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids. Biochim Biophys Acta. doi:10.1016/j.bbalip.2013.12.001

    PubMed  Google Scholar 

  • Verleur N, Hettema EH, van Roermund CW, Tabak HF, Wanders RJ (1997) Transport of activated fatty acids by the peroxisomal ATP-binding-cassette transporter Pxa2 in a semi-intact yeast cell system. Eur J Biochem 249:657–661

    CAS  PubMed  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu Ü, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EP, Yazaki K, Theodoulou FL (2008) Plant ABC proteins- a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    CAS  PubMed  Google Scholar 

  • Wanders RJ (2004) Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol Genet Metab 83:16–27

    CAS  PubMed  Google Scholar 

  • Wanders RJ, van Roermund CW, Schutgens RB, van den Bosch H, Tager JM (1988a) Impaired ability of peroxisomes to activate very-long-chain fatty acids in X-linked adrenoleukodystrophy. Lancet 2:170

    CAS  PubMed  Google Scholar 

  • Wanders RJ, van Roermund CW, van Wijland MJ, Schutgens RB, van den Bosch H, Schram AW, Tager JM (1988b) Direct demonstration that the deficient oxidation of very long chain fatty acids in X-linked adrenoleukodystrophy is due to an impaired ability of peroxisomes to activate very long chain fatty acids. Biochem Biophys Res Commun 153:618–624

    CAS  PubMed  Google Scholar 

  • Wanders RJ, Visser WF, van Roermund CW, Kemp S, Waterham HR (2007) The peroxisomal ABC transporter family. Pflügers Arch 453:719–734

    CAS  PubMed  Google Scholar 

  • Wiesinger C, Kunze M, Regelsberger G, Forss-Petter S, Berger J (2013) Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem 288:19269–19279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woudenberg J, Rembacz KP, Hoekstra M, Pellicoro A, van den Heuvel FA, Heegsma J, van Ijzendoorn SC, Holzinger A, Imanaka T, Moshage H, Faber KN (2010) Lipid rafts are essential for peroxisome biogenesis in HepG2 cells. Hepatology 52:623–633

    CAS  PubMed  Google Scholar 

  • Yang Z, Ohlrogge JB (2009) Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis beta-oxidation mutants. Plant Physiol 150:1981–1989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yernaux C, Fransen M, Brees C, Lorenzen S, Michels PA (2006) Trypanosoma brucei glycosomal ABC transporters: identification and membrane targeting. Mol Membr Biol 23:157–172

    CAS  PubMed  Google Scholar 

  • Zhang X, De Marcos LC, Schutte-Lensink N, Ofman R, Wanders RJ, Baldwin SA, Baker A, Kemp S, Theodoulou FL (2011) Conservation of targeting but divergence in function and quality control of peroxisomal ABC transporters: an analysis using cross-kingdom expression. Biochem J 436:547–557

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zolman BK, Silva ID, Bartel B (2001) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. Plant Physiol 127:1266–1278

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

ABC transporter research in the authors’ labs is supported by BBSRC grants: BB/L001691/1 and BB/L001012/1. Rothamsted Research receives grant-aided support from the BBSRC of the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederica L. Theodoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Theodoulou, F.L., Baldwin, S.A., Baldwin, J.M., Baker, A. (2014). Plant Peroxisomal ABC Transporters: Flexible and Unusual. In: Geisler, M. (eds) Plant ABC Transporters. Signaling and Communication in Plants, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-06511-3_6

Download citation

Publish with us

Policies and ethics