Skip to main content

IBA Transport by PDR Proteins

  • Chapter
  • First Online:
Plant ABC Transporters

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 22))

Abstract

Indole-3-butyric acid (IBA) is an important contributor to auxin homeostasis and blocking IBA conversion to the active auxin indole-3-acetic acid (IAA) results in an array of developmental defects. Similar to IAA, IBA movement within the plant is mediated by carriers, many of which remain unidentified. In this chapter, we discuss roles for IBA in plant development, roles for PLEIOTROPIC DRUG RESISTANCE (PDR) members of the ABCG family in IBA transport, and missing transporters required for IBA movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailly A, Sovero V, Vincenzetti V, Santelia D, Bartnik D, Koenig BW et al (2008) Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 283:21817–21826

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P, Piślewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M et al (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    Article  CAS  PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA et al (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  CAS  PubMed  Google Scholar 

  • Bessire M, Borel S, Fabre G, Carraça L, Efremova N, Yephremov A et al (2011) A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. Plant Cell 23:1958–1970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blommaert K (1954) Growth- and inhibiting-substances in relation to the rest period of the potato tuber. Nature 174:970–972

    Article  CAS  Google Scholar 

  • Cande WZ, Ray PM (1976) Nature of cell-to-cell transfer of auxin in polar transport. Planta 129:43–52

    Article  CAS  PubMed  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • De Rybel B, Audenaert D, Xuan W, Overvoorde P, Strader LC, Kepinski S et al (2012) A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat Chem Biol 8:798–805

    Article  PubMed Central  PubMed  Google Scholar 

  • Dettmer J, Friml J (2011) Cell polarity in plants: when two do the same, it is not the same. Curr Opin Cell Biol 23:686–696

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M et al (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312:1218–1220

    Article  CAS  PubMed  Google Scholar 

  • Donaldson JG, Jackson CL (2000) Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol 12:475–482

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Sagee O (1992) Effect of ethylene treatment on transport and metabolism of indole-3-butyric acid in citrus leaf midribs. Plant Growth Regul 11(4):357–362

    Article  CAS  Google Scholar 

  • Epstein E, Chen K-H, Cohen JD (1989) Identification of indole-3-butyric acid as an endogenous constituent of maize kernels and leaves. Plant Growth Regul 8:215–223

    Article  CAS  Google Scholar 

  • Footitt S, Dietrich D, Fait A, Fernie AR, Holdsworth MJ, Baker A et al (2007) The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol 144:1467–1480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fourcroy P, Sisó-Terraza P, Sudre D, Savirón M, Reyt G, Gaymard F et al (2014) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201:155–167

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O et al (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Syōno K (1997) PIS1, a negative regulator of the action of auxin transport inhibitors in Arabidopsis thaliana. Plant J 12:583–595

    Article  CAS  PubMed  Google Scholar 

  • Ganguly A, Lee SH, Cho M, Lee OR, Yoo H, Cho HT (2010) Differential auxin-transporting activities of PIN-FORMED proteins in Arabidopsis root hair cells. Plant Physiol 153:1046–1061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P et al (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  CAS  PubMed  Google Scholar 

  • Hobbie L, Estelle M (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J 7:211–220

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Gray WM (2006) A gain-of-function mutation in the Arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides. Plant Physiol 142:63–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  CAS  PubMed  Google Scholar 

  • Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 24:447–473

    Article  CAS  PubMed  Google Scholar 

  • Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–3181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318

    Article  CAS  PubMed  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Łangowski Ł, Růžička K, Naramoto S, Kleine-Vehn J, Friml J (2010) Trafficking to the outer polar domain defines the root-soil interface. Curr Biol 20:904–908

    Article  PubMed  Google Scholar 

  • Leopold AC, Lam SL (1961) Polar transport of three auxins. In: Klein RM (ed) Plant growth regulation. Iowa State University Press, Iowa, pp 411–418

    Google Scholar 

  • Linka N, Weber AP (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Barkawi L, Gardner G, Cohen JD (2012a) Transport of indole-3-butyric acid and indole-3-acetic acid in Arabidopsis hypocotyls using stable isotope labeling. Plant Physiol 158:1988–2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Hegeman AD, Gardner G, Cohen JD (2012b) Protocol: High-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods 8:31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD et al (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332

    Article  Google Scholar 

  • Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230

    Article  Google Scholar 

  • Ludwig-Müller J, Sass S, Sutter EG, Wodner M, Epstein E (1993) Indole-3-butyric acid in Arabidopsis thaliana I. Identification and quantification. Plant Growth Regul 13:179–187

    Article  Google Scholar 

  • Ludwig-Müller J, Raisig A, Hilgenberg W (1995a) Uptake and transport of indole-3-butyric acid in Arabidopsis thaliana: comparison with other natural and synthetic auxins. J Plant Physiol 147:351–354

    Article  Google Scholar 

  • Ludwig-Müller J, Schubert B, Pieper K (1995b) Regulation of IBA synthetase from maize (Zea mays L.) by drought stress and ABA. J Exp Bot 46:423–432

    Article  Google Scholar 

  • Ludwig-Müller J, Kaldorf M, Sutter EG, Epstein E (1997) Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plant Sci 125:153–162

    Article  Google Scholar 

  • Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C et al (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18:2066–2073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michniewicz M, Brewer PB, Friml JI (2007a) Polar auxin transport and asymmetric auxin distribution. Arabidopsis Book 5:e0108

    Google Scholar 

  • Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I et al (2007b) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318:1417

    Article  CAS  PubMed  Google Scholar 

  • Mravec J, Skůpa P, Bailly A, Hoyerová P, Bielach A (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136–1140

    Article  CAS  PubMed  Google Scholar 

  • Nordström A-C, Jacobs FA, Eliasson L (1991) Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol 96:856–861

    Article  PubMed Central  PubMed  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594

    Article  PubMed Central  PubMed  Google Scholar 

  • Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K (2012) Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J 72:523–536

    Article  PubMed  Google Scholar 

  • Peer WA, Blakeslee JJ, Yang H, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4:487–504

    Article  CAS  PubMed  Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2:a001446

    Article  PubMed Central  PubMed  Google Scholar 

  • Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  PubMed  Google Scholar 

  • Poupart J, Waddell CS (2000) The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis. Plant Physiol 124:1739–1751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poupart J, Rashotte AM, Muday GK, Waddell CS (2005) The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture. Plant Physiol 139:1460–1471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rashotte AM, Poupart J, Waddell CS, Muday GK (2003) Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiol 133:761–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Růžička K, Strader LC, Bailly A, Yang H, Blakeslee J, Łangowski Ł et al (2010) Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc Natl Acad Sci U S A 107:10749–10753

    Article  PubMed Central  PubMed  Google Scholar 

  • Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64:2565–2577

    Article  CAS  PubMed  Google Scholar 

  • Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F (2013) Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. New Phytol 200(2):473–482

    Article  CAS  PubMed  Google Scholar 

  • Spiess GM, Zolman BK (2013) Peroxisomes as a source of auxin signaling molecules. Subcell Biochem 69:257–281

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P et al (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Bartel B (2009) The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21:1992–2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Bartel B (2011) Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol Plant 4:477–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Monroe-Augustus M, Rogers KC, Lin GL, Bartel B (2008) Arabidopsis iba response5 (ibr5) suppressors separate responses to various hormones. Genetics 180:2019–2031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Hendrickson Culler A, Cohen JD, Bartel B (2010) Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Plant Physiol 153:1577–1586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Wheeler DL, Christensen SE, Berens JC, Cohen JD, Rampey RA et al (2011) Multiple facets of Arabidopsis seedling development require indole-3-butyric acid-derived auxin. Plant Cell 23:984–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutter EG, Cohen JD (1992) Measurement of indolebutyric acid in plant tissues by isotope dilution gas chromatography-mass spectrometry analysis. Plant Physiol 99:1719–1722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y et al (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K et al (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci U S A 107:5220–5225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A et al (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomson K-S, Hertel R, Müller S (1973) 1-N-Naphthylphthalamic acid and 2,3,4-triiodobenzoic acid. Planta 109:337–352

    Article  CAS  PubMed  Google Scholar 

  • Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I et al (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) AGR, an agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • van den Brule S, Smart CC (2002) The plant PDR family of ABC transporters. Planta 216:95–106

    Article  PubMed  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M et al (2008) Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  CAS  PubMed  Google Scholar 

  • Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Bailly A, Zwiewka M, Henrichs S, Azzarello E, Mancuso S et al (2013) Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell 25:202–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Went F, White R (1938) Experiments of the transport of auxin. Bot Gaz 100:465–484

    Article  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Davies PJ (1999) Promotion of stem elongation by indole-3-butyric acid in intact plants of Pisum sativum L. Plant Growth Regul 27:157–160

    Article  CAS  Google Scholar 

  • Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman PW, Wilcoxon F (1935) Several chemical growth substances which cause initiation of roots and other responses in plants. Contrib Boyce Tompson Inst 7:209–229

    CAS  Google Scholar 

  • Zolman BK, Yoder A, Bartel B (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156:1323–1337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zolman BK, Silva ID, Bartel B (2001) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol 127:1266–1278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zolman BK, Nyberg M, Bartel B (2007) IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response. Plant Mol Biol 64:59–72

    Article  CAS  PubMed  Google Scholar 

  • Zolman BK, Martinez N, Millius A, Adham AR, Bartel B (2008) Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Genetics 180:237–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Shauna Somerville for pen3-1 carrying PEN3:PEN3-GFP, Jiří Friml for pis1-1 carrying 35S:GFP-ABCG37, William Gray for pdr9-1 and pdr9-2, and the ABRC at Ohio State University for pen3-4 (SALK_000578), abcg29 (SALK_081047), and abcg33 (SALK_002380). The author’s research is supported by the National Institutes of Health (R00 GM089987-03 to L.C.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia C. Strader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michniewicz, M., Powers, S.K., Strader, L.C. (2014). IBA Transport by PDR Proteins. In: Geisler, M. (eds) Plant ABC Transporters. Signaling and Communication in Plants, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-06511-3_17

Download citation

Publish with us

Policies and ethics